
- •Вопрос 1.
- •Вопрос 2: Виды движений мт и атт: -поступательное; -вращательное вокруг неподвижной оси; - плоское; -движение вокруг неподвижной точки; -свободное движение.
- •Вопрос 3: движ под углом к горизонту
- •Вопрос 4: Траектория движения. Криволинейное движение. Нормальное и тангенциальное ускорения при криволинейном движении.
- •Вопрос 5: Вращательное движение. Угловая скорость и угловое ускорение. Кинематические уравнения для вращательного движения.
- •Вопрос 6: Связь между линейными и угловыми характеристиками мт и атт при их вращении вокруг точки или оси
- •Вопрос 7 Понятия динамики. Три закона Ньютона. Сила, импульс. Основное уравнение динамики поступательного движения. Силы в механике.
- •4)Гравитац. Сила
- •Вопрос 8: Инерциальные системы отсчета. Собственная и лабораторные исо. Механический принцип относительности Галилея. Преобразования Галилея.
- •Вопрос 9:Система материальных точек. Закон сохранения импульса. Абсолютно упругий и неупругие удары.
- •13. Силы упругости. Упругие деформации. Закон Гука. Потенциальная энергия в поле упругих сил
- •14. Силы трения. Уравнение динамики поступательного движения при наличии трения- на примере
- •15. Гравитационное взаимодействие. Сила всемирного тяготения. Сила тяжести и невесомостью. Фундаментальный физический закон Галилея
- •16.Работа гравитационных сил. Потенциал и напряженность гравитационного поля. Космические скорости.
- •17.Основные динамические характеристики движения
- •18.Вращательное движение. Момент импульса Lr и момент силы м мт относительно точки. Главный момент системы сил.
- •20. Уравнение моментов. Законы изменения и сохранения момента импульса при вращении мт вокруг точки и атт, закрепленного в одной точке
- •21. Пара сил. Центр тяжести (цт) механической системы
- •23. Закон изменения и сохранения момента импульса мт и атт. Скамья Жуковского.
- •24. Момент инерции мт и атт. Теорема Штейнера. Расчет момента инерции тонкого стержня.
- •Теорема Штейнера:
- •Вопрос 26 : Свободные гармонические механические колебания и их характеристики. Математический и физический маятники.
- •Вопрос 27: Векторная диаграмма и сложение одинаково направленных гармонических колебаний
- •28) Сложение взаимно перпендикулярных гармонических колебаний.
- •29) Дифференциальное уравнение свободных гармонических механических колебаний и его решение. Энергия колебаний. Физический маятник.
- •30) Затухающие гармонические колебания. Коэффициент затухания и логарифмический декремент затухания. Время релаксации.
- •31.Вынужденные колебания. Расчёт амплитуды и фазы
- •32. Резонанс механических колебаний
- •33. Уравнения упругих волн, плоской и сферической. Принцип суперпозиции волн. Фазовая и групповая скорости
- •34. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
- •35. Звук. Распространение упругих волн в упругой среде. Характеристики упругих волн.
- •36. Волновой перенос энергии и его характеристики: поток, плотность потока, интенсивность. Вектор Пойтинга.
- •37. Границы применимости классической механики. Теория относительности. Постулаты Эйнштейна. Преобразования Лоренца.
- •39. Теорема сложения скоростей в сто.
- •40. Импульс в релятивистской механике.
- •41. Релятивистские законы Ньютона. Связь между энергией и импульсом частицы
- •43. Корпускулярно-волновой дуализм. Длина волны де Бройля. Квантование электронных орбит атома в модели де Бройля. Соотношения неопределенностей.
- •44. Предмет квантовой механики. Волновая функция, ее свойства и статистический смысл.
- •45. Временное и стационарное уравнение Шредингера. Решения.
- •46. Решение уравнения Шредингера для свободной частицы.
- •Вопрос 47: Уровни энергии и волновая функция частицы, находящейся в прямоугольной потенциальной яме.
- •48. Квантовый гармонический осциллятор.
- •50. Молекулярная физика, макросистемы и положения мкт. Идеальный газ. Эргодическая гипотеза. Постоянные в молекулярной физике. Основное уравнение молекулярно-кинетической теории – вывод.
- •51.Степени свободы молекул. Закон Больцмана о равномерном распределении энергии по степеням свободы. Внутренняя энергия идеального газа.
- •52. Эффективный диаметр, средние длина и время свободного пробега, число столкновений в единицу времени для молекул идеального газа.
- •53. Законы идеального газа, адиабатический процесс – вывод уравнения Пуассона.
- •54. Политропический процесс – вывод уравнения состояния.
- •55. Термодинамика. Термодинамические система и параметры, термодинамическое равновесие. Равновесный процесс. Внутренняя энергия – функция состояния.
- •56. Пути изменения внутренней энергии. Теплота и работа. Первое начало термодинамики. Работа расширяющегося газа.
- •58.Теплоёмкость идеального газа
- •Вопрос 59: Работа – функция процесса. Работа, совершаемая газом при изотермическом и изохорном процессах. Изохорический процесс
- •Вопрос 60:Работа – функция процесса. Работа, совершаемая газом при изобарическом процессе.
- •63. Второе начало термодинамики. Самопроизвольные и несамопроизвольные процессы. Равенство и неравенство Клаузиуса.
- •66. Третье начало термодинамики (теорема Нернста).
- •71.Эффект Джоуля- Томсона отрицательный
- •72. Эффект Джоуля-Томсона – положительный и интегральный.
- •75. Явления переноса: внутреннее трение.
- •76 Явления переноса: диффузия и теплопроводность
13. Силы упругости. Упругие деформации. Закон Гука. Потенциальная энергия в поле упругих сил
Силы упругости – силы, возник. при деформации тела и направл. в сторону, противоположную движению частиц при деформации.
Упругие деформации – это деформ., кот. полностью исчезают после снятия нагрузки.
Закон Гука: F=-kx, k – коэффициент упругости.
14. Силы трения. Уравнение динамики поступательного движения при наличии трения- на примере
Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел..
Сила трения покоя не может превышать некоторого максимального значения (Fтр)max. Если внешняя сила больше (Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел.
Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры
Fтр = (Fтр)max = μN.
Коэффициент пропорциональности μ называют коэффициентом трения скольжения.
Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости.
При движении твердого тела в жидкости или газе возникает силa вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.
Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях Fтр ~ υ, при больших скоростях Fтр ~ υ2. При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.
Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.
-сила трения скольжения, качения, покоя.
15. Гравитационное взаимодействие. Сила всемирного тяготения. Сила тяжести и невесомостью. Фундаментальный физический закон Галилея
Все тела, имеющие массу, притягиваются друг к другу.
Масса тела – мера его гравитационного взаимодействия.
Сила тяжести – это сила, с которой Земля притягивает к себе все тела, находящиеся на поверхности Земли или вблизи её
Невесомость – состояние, при котором вес тела равен 0.
Тело, движ. только лишь под действием силы тяжести, наход. в сост. невесомости.
Фунд. физ. закон: все тела в одном и том же поле тяготения падают с одинак. ускорением g