
- •Неопределенный интеграл. Подробные примеры решений
- •Как можно отблагодарить автора?
- •Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •Как можно отблагодарить автора?
- •Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Как можно отблагодарить автора?
- •Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •Как можно отблагодарить автора?
- •Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Как можно отблагодарить автора?
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •Как можно отблагодарить автора?
- •Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •Как можно отблагодарить автора?
- •Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •Как можно отблагодарить автора?
- •Определенный интеграл. Примеры решений
- •Замена переменной в определенном интеграле
- •Метод интегрирования по частям в определенном интеграле
- •Определенный интеграл. Как вычислить площадь фигуры
- •Как можно отблагодарить автора?
- •Что такое интеграл? Теория для чайников
- •С чего начать?
- •Первообразная функция, неопределённый интеграл и его свойства
- •Свойства неопределённого интеграла
- •Определённый интеграл и его свойства
- •Вывод формулы Ньютона-Лейбница
- •Рассмотрим основные свойства определённого интеграла
- •Общая концепция задачи интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как можно отблагодарить автора?
- •Несобственные интегралы. Примеры решений
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Как можно отблагодарить автора?
- •Эффективные методы решения определенных и несобственных интегралов
- •Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Метод решения несобственного интеграла с бесконечным нижним пределом
- •Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
- •Как построить фигуру, если её надо построить, но под рукой нет программы?
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры и объём тела вращения, если линия задана параметрически?
- •Как найти площадь в этом случае?
- •Формула объёма тела вращения получается так же просто:
- •Нужно ли в рассматриваемом типе задач выполнять чертёж?
- •Найти площадь эллипса
- •Как найти объем тела вращения, если фигура ограничена параметрически заданной линией?
- •Как можно отблагодарить автора?
- •Как вычислить длину дуги кривой?
- •Как найти длину дуги кривой, если линия задана параметрически?
- •Как найти длину дуги кривой, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить площадь поверхности вращения?
- •Площадь поверхности тора
- •Площадь поверхности вращения при параметрически заданной линии
- •Как вычислить площадь поверхности вращения, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
- •Как можно отблагодарить автора?
Как можно отблагодарить автора?
|
Как вычислить площадь поверхности вращения?
Рад приветствовать вас на «окраине» темы, где мы разберём ещё одно, более редкое приложение определённого интеграла – нахождение площади поверхности вращения. Предполагаю, что здесь собрались люди, знающие толк в интегралах, поэтому сразу перейду к основным понятиям и практическим примерам.
Посмотрим на лаконичную картинку
и
вспомним: что можно вычислить с
помощью определённого
интеграла?
В первую очередь, конечно, площадь криволинейной трапеции. Знакомо со школьных времён.
Если же данная фигура вращается вокруг координатной оси, то речь уже идёт о нахожденииобъёма тела вращения. Тоже просто.
Что ещё? Не так давно была рассмотрена задача о длине дуги кривой .
И сегодня мы научимся рассчитывать ещё одну характеристику – ещё одну площадь. Представьте, что линия вращается вокруг оси . В результате этого действия получается геометрическая фигура, называемая поверхностью вращения. В данном случае она напоминает такой горшок без дна. И без крышки. Как бы сказал ослик Иа-Иа, душераздирающее зрелище =)
Чтобы исключить двусмысленную трактовку, сделаю занудное, но важное уточнение:
с геометрической точки зрения наш «горшок» имеет бесконечно тонкую стенку и двеповерхности с одинаковыми площадями – внешнюю и внутреннюю. Так вот, все дальнейшие выкладки подразумевают площадь только внешней поверхности.
В прямоугольной системе координат площадь поверхности вращения рассчитывается по формуле:
или,
если компактнее:
.
К функции и её производной предъявляются
те же требования, что и при нахождении длины
дуги кривой, но, кроме
того, кривая
должна
располагаться выше оси
.
Это существенно! Нетрудно понять, что
если линия располагается под осью
,
топодынтегральная
функция будет отрицательной:
,
и поэтому к формуле придётся добавить
знак «минус» дабы сохранить геометрический
смысл задачи.
Рассмотрим незаслуженно обойденную вниманием фигуру:
Площадь поверхности тора
В двух словах, тор – это бублик. Хрестоматийный пример, рассматриваемый практически во всех учебниках по матану, посвящён нахождению объёма тора, и поэтому в целях разнообразия я разберу более редкую задачу о площади его поверхности. Сначала с конкретными числовыми значениями:
Пример 1
Вычислить площадь поверхности тора,
полученного вращением окружности
вокруг
оси
.
Решение: как вы знаете,
уравнение
задаёт окружность единичного
радиуса с центром в точке
.
При этом легко получить две функции:
–
задаёт верхнюю полуокружность;
–
задаёт нижнюю полуокружность:
Суть кристально прозрачна: окружность вращается вокруг оси абсцисс и образуетповерхность бублика. Единственное, здесь во избежание грубых оговорок следует проявить аккуратность в терминологии: если вращать круг, ограниченный окружностью , то получится геометрическое тело, то есть сам бублик. И сейчас разговор о площади его поверхности, которую, очевидно, нужно рассчитать как сумму площадей:
1) Найдём площадь поверхности, которая
получается вращением «синей» дуги
вокруг
оси абсцисс. Используем формулу
.
Как я уже неоднократно советовал,
действия удобнее проводить поэтапно:
Берём функцию
и
находим её производную:
Далее максимально упрощаем корень:
И, наконец, заряжаем результат в формулу:
Заметьте, что в данном случае оказалось рациональнее удвоить интеграл от чётной функции по ходу решения, нежели предварительно рассуждать о симметрии фигуры относительно оси ординат.
2) Найдём площадь поверхности, которая
получается вращением «красной»
дуги
вокруг
оси абсцисс. Все действия будут отличаться
фактически только одним знаком. Оформлю
решение в другом стиле, который, само
собой, тоже имеет право на жизнь:
3)
Таким образом, площадь поверхности
тора:
Ответ:
Задачу можно было решить в общем виде
– вычислить площадь поверхности тора,
полученного вращением окружности
вокруг
оси абсцисс, и получить ответ
.
Однако для наглядности и бОльшей простоты
я провёл решение на конкретных числах.
Если вам необходимо рассчитать объём
самого бублика, пожалуйста, обратитесь
к учебнику, в качестве экспресс-справки:
Что только мы не делали с параболой за годы обучения, поэтому было бы большим упущением не покрутить её в своё удовольствие:
Пример 2
Вычислить площадь поверхности тела,
полученного вращением параболы
вокруг
оси
на
промежутке
.
Здесь нужно рассмотреть верхнюю ветвь и действовать по стандартному алгоритму. Сама поверхность вращения, как многие представили, напоминает «кружку с яйцевидным дном», что кармически намного лучше дырявого горшка =)
Краткое решение и ответ в конце урока.
Чертёж в рассматриваемом типе задач не обязателен (кроме затейливых примеров), но всегда полезно хотя бы иметь представление о поверхности вращения.