- •Неопределенный интеграл. Подробные примеры решений
- •Как можно отблагодарить автора?
- •Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •Как можно отблагодарить автора?
- •Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Как можно отблагодарить автора?
- •Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •Как можно отблагодарить автора?
- •Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Как можно отблагодарить автора?
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •Как можно отблагодарить автора?
- •Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •Как можно отблагодарить автора?
- •Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •Как можно отблагодарить автора?
- •Определенный интеграл. Примеры решений
- •Замена переменной в определенном интеграле
- •Метод интегрирования по частям в определенном интеграле
- •Определенный интеграл. Как вычислить площадь фигуры
- •Как можно отблагодарить автора?
- •Что такое интеграл? Теория для чайников
- •С чего начать?
- •Первообразная функция, неопределённый интеграл и его свойства
- •Свойства неопределённого интеграла
- •Определённый интеграл и его свойства
- •Вывод формулы Ньютона-Лейбница
- •Рассмотрим основные свойства определённого интеграла
- •Общая концепция задачи интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как можно отблагодарить автора?
- •Несобственные интегралы. Примеры решений
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Как можно отблагодарить автора?
- •Эффективные методы решения определенных и несобственных интегралов
- •Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Метод решения несобственного интеграла с бесконечным нижним пределом
- •Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
- •Как построить фигуру, если её надо построить, но под рукой нет программы?
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры и объём тела вращения, если линия задана параметрически?
- •Как найти площадь в этом случае?
- •Формула объёма тела вращения получается так же просто:
- •Нужно ли в рассматриваемом типе задач выполнять чертёж?
- •Найти площадь эллипса
- •Как найти объем тела вращения, если фигура ограничена параметрически заданной линией?
- •Как можно отблагодарить автора?
- •Как вычислить длину дуги кривой?
- •Как найти длину дуги кривой, если линия задана параметрически?
- •Как найти длину дуги кривой, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить площадь поверхности вращения?
- •Площадь поверхности тора
- •Площадь поверхности вращения при параметрически заданной линии
- •Как вычислить площадь поверхности вращения, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
- •Как можно отблагодарить автора?
Как можно отблагодарить автора?
|
Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
Это, пожалуй, одно из самых популярных приложений определённого интеграла после вычисления площади в прямоугольных координатах и объёма тела вращения. Для изучения материалов урока необходимо понимать, что такое полярные координаты и знать полярные уравнения простейших линий. Разумеется, потребуются навыки нахождениянеопределённого и определённого интеграла, поэтому если у вас появятся технические трудности и/или недопонимание по ходу изложения, пожалуйста, начните с базовых статей.
Всё очень и очень напоминает привычную задачу нахождения площади. Полярным аналогом криволинейной трапеции является криволинейный сектор.
Рассмотрим некоторую функцию
,
заданную в полярной
системе координат,которая
принимает неотрицательные значения на
отрезке
и непрерывна на
нём.Криволинейным сектором называется
ФИГУРА, ограниченная отрезками лучей
и
графиком
:
Площадь
криволинейного сектора рассчитывается
по формуле
.
Как видите, перед интегралом ставится
дробь
,
сама функция
возводится
в квадрат, а интегрирование осуществляется
по переменной «фи».
В качестве демонстрационного примера,
вычислим площадь круга, ограниченного
окружностью
с
центром в полюсе, радиуса 2. Очевидно,
что
и
по формуле:
Сравните с Примером №4 урока Эффективные методы решения определённых интегралов, где площадь этого же круга рассчитана в прямоугольной системе координат ;-)
Бензопила заправлена и прогрета:
Пример 1
Вычислить площадь фигуры, ограниченной
линией
Решение: первый и главный совет:
Экономьте время на чертеже. Проще всего прибегнуть к программным средствам, например, воспользоваться моим графопостроителем в полярных координатах. Клик-клик – и готово, далее быстренько перерисовываем чертёж в тетрадь или при электронном способе оформления копируем его в Вёрд.
Если есть возможность быстро построить фигуру – всегда её стройте (даже если этого не требуется по условию). Чертёж усиливает задание, кроме того, как и при нахождении площади в прямоугольных координатах, даёт отличную возможность прикинуть по клеточкам правдоподобность получившегося результата.
Если же инструментальные средства по той или иной причине недоступны, и вы совсем не представляете, как выглядит фигура, то придерживайтесь противоположной тактики:
По возможности чертёж выгоднее НЕ строить вообще.
Ручное построение чертежа в полярных
координатах – процесс
длительный и трудоёмкий, за это время
можно успеть выпить банку, а то
и две пива решить несколько, а
то и целый десяток интегралов. Исходя
из личного опыта, могу с уверенностью
сказать, что в простых примерах, как
этот, построение чертежа на чистовике
скорее не оправдано, чем оправдано.
Конечно, если по условию требуется выполнить
чертёж (или его дополнительно требует
преподаватель), то никуда не деться, но
по умолчанию гораздо рациональнее
попытаться отделаться чисто аналитическим
решением.
В нашем случае задача облегчается ещё
и тем, что
для
любого «фи»,
а значит, угол, как и
в примере с площадью круга,
принимает все значения
от
до
.
По рабочей формуле:
Стандартно понижаем степень с помощью известной тригонометрической формулы:
Ничего сложного тут нет, главное, не допустить ошибку в преобразованиях и вычислениях. В частности, не забывайте, что площадь не может быть отрицательной, и если у вас вдруг получится такой результат, ищите оплошность.
Ответ:
Забавно, что можно вообще не иметь ни малейшего представления о том, какую фигуру ограничевает линия . Однако студенческое счастье переменчиво и всегда нужно быть готовым к худшему сценарию:
