- •Неопределенный интеграл. Подробные примеры решений
- •Как можно отблагодарить автора?
- •Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •Как можно отблагодарить автора?
- •Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Как можно отблагодарить автора?
- •Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •Как можно отблагодарить автора?
- •Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Как можно отблагодарить автора?
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •Как можно отблагодарить автора?
- •Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •Как можно отблагодарить автора?
- •Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •Как можно отблагодарить автора?
- •Определенный интеграл. Примеры решений
- •Замена переменной в определенном интеграле
- •Метод интегрирования по частям в определенном интеграле
- •Определенный интеграл. Как вычислить площадь фигуры
- •Как можно отблагодарить автора?
- •Что такое интеграл? Теория для чайников
- •С чего начать?
- •Первообразная функция, неопределённый интеграл и его свойства
- •Свойства неопределённого интеграла
- •Определённый интеграл и его свойства
- •Вывод формулы Ньютона-Лейбница
- •Рассмотрим основные свойства определённого интеграла
- •Общая концепция задачи интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как можно отблагодарить автора?
- •Несобственные интегралы. Примеры решений
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Как можно отблагодарить автора?
- •Эффективные методы решения определенных и несобственных интегралов
- •Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Метод решения несобственного интеграла с бесконечным нижним пределом
- •Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
- •Как построить фигуру, если её надо построить, но под рукой нет программы?
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры и объём тела вращения, если линия задана параметрически?
- •Как найти площадь в этом случае?
- •Формула объёма тела вращения получается так же просто:
- •Нужно ли в рассматриваемом типе задач выполнять чертёж?
- •Найти площадь эллипса
- •Как найти объем тела вращения, если фигура ограничена параметрически заданной линией?
- •Как можно отблагодарить автора?
- •Как вычислить длину дуги кривой?
- •Как найти длину дуги кривой, если линия задана параметрически?
- •Как найти длину дуги кривой, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить площадь поверхности вращения?
- •Площадь поверхности тора
- •Площадь поверхности вращения при параметрически заданной линии
- •Как вычислить площадь поверхности вращения, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
- •Как можно отблагодарить автора?
Интегрирование биномиальных интегралов
Так называемый биномиальный интеграл
имеет следующий вид:
.
Такой интеграл берётся в трёх случаях.
1) Случай первый. Самый
лёгкий.
Если степень
–
целое число.
Например:
Представим интеграл в стандартном виде
(это лучше делать на черновике):
Мы
видим, что степень
–
целая, а, значит, действительно имеет
место первый случай. На самом деле
биномиальный интеграл первого типа
решается практически так же, как интегралы
в примерах 5, 6, поэтому приводить почти
такие же решения особого смысла нет –
я просто покажу, какую замену здесь
нужно провести.
Смотрим на знаменатели
дробей:
Записываем
знаменатели: 2, 5. Находим наименьшее
общее кратное этих чисел. Очевидно, это
10: оно делится и на 2 и на 5, кроме того –
десятка самая маленькая в этом
смысле.
После замены
все
корни гарантировано пропадут. Повторюсь,
примеров для первого случая не будет,
так как они очень похожи на недавно
разобранные интегралы.
2) Случай второй
Если
–
целое число, то необходимо провести
замену
,
где
–
знаменатель дроби
.
Спокойствие, только спокойствие, сейчас во всём разберемся.
Пример 7
Найти неопределенный интеграл
Представим интеграл в стандартном
виде
:
.
Вообще говоря, формально правильнее
было записать
,
но перестановка слагаемых в скобках не
играет никакой роли.
Выписываем степени:
,
,
Сразу
проверяем, не относится ли наш интеграл
к первому случаю?
–
целое? Нет.
Проверяем второй случай:
–
целое, значит у нас второй случай
Согласно
правилу для второго случая, необходимо
провести замену
,
где
–
знаменатель дроби
.
В рассматриваемом примере
,
и знаменатель этой дроби равен «двойке».
Таким образом, чтобы гарантировано
избавиться от корня, нужно провести
замену
.
Оформляем решение:
Проведем замену
.
После
этой подстановки с корнем у нас будет
всё гуд:
Теперь
нужно выяснить, во что превратится оставшаяся
часть подынтегрального
выражения
Берем
нашу замену
и навешиваем дифференциалы
на обе части:
Но
вот, незадача, у нас
,
а нам нужно выразить
.
Умножаем
обе части на
:
Таким
образом:
.
Уже лучше, но хотелось бы выразить
только
через
,
а в правой части
–
«икс» в квадрате внизу. Что делать?
Вспоминаем нашу замену
и
выражаем из неё нужный нам
.
Окончательно:
.
Головоломно, но, увы, другие алгоритмы
еще запутаннее.
Собственно, всё готово, продолжаем решение:
(1) Проводим подстановку согласно замене.
(2) Записываем компактно числитель.
(3) Раскладываем знаменатель в сумму.
(4) Почленно делим числитель на знаменатель.
(5) Интегрируем по таблице.
(6) Проводим обратную замену: если
,
то
Пример 8
Найти неопределенный интеграл
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
3) Случай третий. Самый сложный
Если
–
целое число, то необходимо провести
замену
,
где
–
знаменатель дроби
.
Пример 9
Найти неопределенный интеграл
Представим интеграл в стандартном
виде
:
.
Выписываем степени и коэффициенты:
,
,
,
,
1) Не относится ли наш интеграл к первому случаю? – целое? Нет.
2) Проверяем второй случай:
–
целое? Нет.
3)
–
целое! Значит, у нас третий случай.
Согласно правилу для третьего случая, необходимо провести замену , где – знаменатель дроби . В рассматриваемом примере , и знаменатель этой дроби равен опять же «двойке». Коэффициенты (будьте внимательны) ,
Таким образом, чтобы гарантировано
избавиться от корня, нужно провести
замену
.
Оформляем решение:
Проведем замену: .
Разбираемся с корнем. Это труднее, чем
в предыдущих случаях.
Сначала из
нашей замены
нужно
выразить «икс квадрат»:
Теперь
подставляем
под
корень:
На втором этапе выясняем, во что
превратится оставшаяся
часть подынтегрального
выражения
.
Берем нашу замену
и
навешиваем дифференциалы на обе части:
Опять проблема, в правой части у нас
есть «икс», а нам нужно всё выразить
через «тэ».
Берем ранее найденное
выражение
и
выражаем
Окончательно:
В итоге мы выразили через «тэ» и
и
,
всё готово для продолжения решения:
(1) Проводим подстановку согласно замене.
(2) Упрощаем выражение.
(3) Меняем знак в знаменателе и выносим минус за пределы интеграла (можно было не делать, но так удобнее).
(4) Проводим обратную замену. В третьем
случае биномиального интеграла это
тоже труднее. Если изначальная замена
,
то
.
(5) Избавляемся от четырехэтажности в логарифме.
Пример 10
Найти неопределенный интеграл
Да что такое, опять числитель голый… Честное слово, не нарочно получилось =)
Это пример для самостоятельного решения.
Подсказка: здесь
Полное
решение и ответ только для выживших
студентов.
Что делать, если биномиальный интеграл не подходит ни под один из рассмотренных трех случаев? Это грустный четвертый случай. Такой интеграл является неберущимся.
Почти всё рассмотрено. Есть другие разновидности интегралов с корнями, например, когда корень является аргументом какой-либо функции. Или под корнем находится дробь. Найти такие примеры можно на странице Сложные интегралы.
Желаю успехов!
Решения и ответы:
Пример 2: Решение:
Проведем
замену:
Пример 4: Решение:
Проведем
замену:
.
Навешиваем дифференциалы на обе
части:
Вот
почему дифференциалы нужно
именно НАВЕШИВАТЬ на
обе части и добросовестно раскрывать
эти дифференциалы. Немало чайников
здесь формально напишет
и
допустит ошибку.
Пример 6: Решение:
Замена:
Примечание:
на самом деле данное решение не совсем
рационально. Перед тем, как раскладывать
числитель в сумму, лучше было поменять
у знаменателя знак и сразу вынести минус
за пределы интеграла:
–
в таком виде подбирать числитель
значительно проще.
Пример 8: Решение:
,
,
,
1)
–
целое? Нет.
2)
–
целое, значит у нас второй
случай.
Замена:
Если
,
то
Окончательно:
Пример 10: Решение:
,
,
,
,
1)
–
целое? Нет.
2)
–
целое? Нет.
3)
–
целое!
Замена:
,
в данном случае:
Разбираемся с корнем. Из
:
Тогда:
Оставшаяся часть подынтегрального
выражения:
Чему
равно
?
Окончательно:
Обратная
замена. Если
,
то
Вы выполнили проверку, может, где ошибочка вышла ;)
Автор: Емелин Александр
Высшая математика для заочников и не только >>>
(Переход на главную страницу)
