
- •Неопределенный интеграл. Подробные примеры решений
- •Как можно отблагодарить автора?
- •Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •Как можно отблагодарить автора?
- •Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Как можно отблагодарить автора?
- •Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •Как можно отблагодарить автора?
- •Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Как можно отблагодарить автора?
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •Как можно отблагодарить автора?
- •Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •Как можно отблагодарить автора?
- •Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •Как можно отблагодарить автора?
- •Определенный интеграл. Примеры решений
- •Замена переменной в определенном интеграле
- •Метод интегрирования по частям в определенном интеграле
- •Определенный интеграл. Как вычислить площадь фигуры
- •Как можно отблагодарить автора?
- •Что такое интеграл? Теория для чайников
- •С чего начать?
- •Первообразная функция, неопределённый интеграл и его свойства
- •Свойства неопределённого интеграла
- •Определённый интеграл и его свойства
- •Вывод формулы Ньютона-Лейбница
- •Рассмотрим основные свойства определённого интеграла
- •Общая концепция задачи интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как можно отблагодарить автора?
- •Несобственные интегралы. Примеры решений
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Как можно отблагодарить автора?
- •Эффективные методы решения определенных и несобственных интегралов
- •Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Метод решения несобственного интеграла с бесконечным нижним пределом
- •Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
- •Как построить фигуру, если её надо построить, но под рукой нет программы?
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры и объём тела вращения, если линия задана параметрически?
- •Как найти площадь в этом случае?
- •Формула объёма тела вращения получается так же просто:
- •Нужно ли в рассматриваемом типе задач выполнять чертёж?
- •Найти площадь эллипса
- •Как найти объем тела вращения, если фигура ограничена параметрически заданной линией?
- •Как можно отблагодарить автора?
- •Как вычислить длину дуги кривой?
- •Как найти длину дуги кривой, если линия задана параметрически?
- •Как найти длину дуги кривой, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить площадь поверхности вращения?
- •Площадь поверхности тора
- •Площадь поверхности вращения при параметрически заданной линии
- •Как вычислить площадь поверхности вращения, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
- •Как можно отблагодарить автора?
Интегрирование неправильной дробно-рациональной функции
Перейдем к рассмотрению случая, когда старшая степень числителя больше либо равна старшей степени знаменателя.
Пример 8
Найти неопределенный интеграл.
Совершенно очевидно, что данная дробь
является неправильной:
Основной метод решения интеграла с неправильной дробно-рациональной функций – этоделение числителя на знаменатель. Алгоритм деления многочленов столбиком рассматривался на уроке Сложные пределы, и сейчас мы закрепим навыки.
Сначала рисуем «заготовку» для деления:
ВСЕ недостающие степени (и (или) свободные члены) без пропусков записываем в ОБОИХ многочленах с нулевыми коэффициентами.
Теперь маленькая задачка, на какой
множитель нужно умножить
,
чтобы получить
?
Очевидно, что на
:
Далее умножаем
сначала
на
,
потом – на
,
потом – на
,
потом – на 0 и записываем результаты
слева:
Проводим черточку и производим вычитание
(из верха вычитаем низ):
Старшая
степень остатка
равна
двум, старшая степень делителя
–
больше, она равна трём, значит, больше
разделить не удастся. Если бы изначально
у нас был в числителе многочлен пятой
степени, то то алгоритм деления увеличился
бы на один шаг.
Итак, наше решение принимает следующий
вид:
Делим числитель на знаменатель:
(1) Что дало деление? Много хорошего: теперь у нас два слагаемых, первое – интегрируется совсем просто, а второе – правильная дробь, которую мы решать уже умеем.
После деления всегда желательно выполнять
проверку.
В рассматриваемом примере
можно привести к общему знаменателю
,
и в результате получится в точности
исходная неправильная дробь
(2) От первого слагаемого сразу берем интеграл. Знаменатель дроби раскладываем на множители
Дальше всё идет по накатанной схеме:
Методом неопределенных коэффициентов
разложим подынтегральную функцию в
сумму элементарных дробей:
Готово.
И, наконец, заключительный пример для самостоятельного решения. Он очень интересен, рекомендую всем!
Пример 9
Найти неопределенный интеграл.
Только что обратил внимание, что во всех
примерах урока в ходе решения систем у
нас получались «хорошие» целые
коэффициенты
.
По той причине, что почти все интегралы
я взял из сборника Рябушко. На практике
же
, когда автор методички придумает
какой-нибудь корявый интеграл, часто
будут появляться разные нехорошести.
Таким
образом, если в ходе решения интеграла
от дробно-рациональной функции у Вас
получаются дробные значения коэффициентов
,
то в этом нет ничего страшного, ситуация
даже обыденна.
Желаю успехов!
Решения и ответы:
Пример 2: Решение:
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:
Комментарий: в правой части у нас нет слагаемого с , поэтому в первом уравнении системы ставим справа ноль.
Пример 4: Решение:
Шаг 1. Проверяем,
правильная ли у нас дробь
Старшая
степень числителя: 6
Старшая
степень знаменателя: 8
,
значит, дробь является правильной.
Шаг 2. Можно ли что-нибудь
разложить в знаменателе на множители.
Множитель
разложить
нельзя, а вот
–
можно:
Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей. В данном случае, разложение имеет следующий вид:
Пример 6: Решение:
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:
Пример 7: Решение:
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:
Пример 9: Решение:
(1) Здесь неправильная дробь, поскольку старшие степени числителя и знаменателя равны: 3 = 3. Для того чтобы разделить числитель на знаменатель придётся временно раскрыть скобки в знаменателе.
(2)-(3) Теперь можно разделить
на
знаменатель
,
но делать этого… я не буду. Можно
поступить хитрее. Используем прием,
который рассмотрен в первом параграфе
урока Интегрирование
некоторых дробей.
(4) От первого слагаемого сразу берем
интеграл. Знаменатель оставшейся, уже
правильной, дроби снова записываем в
виде произведения множителей. Тут я
немного подсократил разложение, надеюсь,
всем понятно, что
Далее накатанная колея…
Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:
Вы выполнили проверку, мож где ошибочка вышла ;)
Автор: Емелин Александр
Высшая математика для заочников и не только >>>
(Переход на главную страницу)