- •Неопределенный интеграл. Подробные примеры решений
- •Как можно отблагодарить автора?
- •Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •Как можно отблагодарить автора?
- •Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Как можно отблагодарить автора?
- •Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •Как можно отблагодарить автора?
- •Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Как можно отблагодарить автора?
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •Как можно отблагодарить автора?
- •Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •Как можно отблагодарить автора?
- •Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •Как можно отблагодарить автора?
- •Определенный интеграл. Примеры решений
- •Замена переменной в определенном интеграле
- •Метод интегрирования по частям в определенном интеграле
- •Определенный интеграл. Как вычислить площадь фигуры
- •Как можно отблагодарить автора?
- •Что такое интеграл? Теория для чайников
- •С чего начать?
- •Первообразная функция, неопределённый интеграл и его свойства
- •Свойства неопределённого интеграла
- •Определённый интеграл и его свойства
- •Вывод формулы Ньютона-Лейбница
- •Рассмотрим основные свойства определённого интеграла
- •Общая концепция задачи интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как можно отблагодарить автора?
- •Несобственные интегралы. Примеры решений
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Как можно отблагодарить автора?
- •Эффективные методы решения определенных и несобственных интегралов
- •Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Метод решения несобственного интеграла с бесконечным нижним пределом
- •Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
- •Как построить фигуру, если её надо построить, но под рукой нет программы?
- •Как можно отблагодарить автора?
- •Как вычислить площадь фигуры и объём тела вращения, если линия задана параметрически?
- •Как найти площадь в этом случае?
- •Формула объёма тела вращения получается так же просто:
- •Нужно ли в рассматриваемом типе задач выполнять чертёж?
- •Найти площадь эллипса
- •Как найти объем тела вращения, если фигура ограничена параметрически заданной линией?
- •Как можно отблагодарить автора?
- •Как вычислить длину дуги кривой?
- •Как найти длину дуги кривой, если линия задана параметрически?
- •Как найти длину дуги кривой, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить площадь поверхности вращения?
- •Площадь поверхности тора
- •Площадь поверхности вращения при параметрически заданной линии
- •Как вычислить площадь поверхности вращения, если линия задана в полярной системе координат?
- •Как можно отблагодарить автора?
- •Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
- •Как можно отблагодарить автора?
Метод подведения под знак дифференциала для простейших дробей
Переходим к рассмотрению следующего
типа дробей.
,
,
,
(коэффициенты
и
не
равны нулю).
На самом деле пара случаев с арксинусом и арктангенсом уже проскальзывала на урокеМетод замены переменной в неопределенном интеграле. Решаются такие примеры способом подведения функции под знак дифференциала и дальнейшим интегрированием с помощью таблицы. Вот еще типовые примеры с длинным и высоким логарифмом:
Пример 5
Пример 6
Тут целесообразно взять в руки таблицу
интегралов и проследить, по каким
формулам и какосуществляется
превращение. Обратите внимание, как
и зачем выделяются квадраты в
данных примерах. В частности, в примере
6 сначала необходимо представить
знаменатель
в
виде
,
потом подвести
под
знак дифференциала. А сделать это всё
нужно для того, чтобы воспользоваться
стандартной табличной формулой
.
Да что смотреть, попробуйте самостоятельно решить примеры №№7,8, тем более, они достаточно короткие:
Пример 7
Найти неопределенный интеграл:
Пример 8
Найти неопределенный интеграл:
Если Вам удастся выполнить еще и проверку данных примеров, то большой респект – Ваши навыки дифференцирования на высоте.
Метод выделения полного квадрата
Интегралы вида
,
(коэффициенты
и
не
равны нулю) решаютсяметодом выделения
полного квадрата, который уже
фигурировал на урокеГеометрические
преобразования графиков.
На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:
или
Формулы применяются именно в таком
направлении, то есть, идея метода состоит
в том, чтобы в знаменателе искусственно
организовать выражения
либо
,
а затем преобразовать их соответственно
в
либо
.
Пример 9
Найти неопределенный интеграл
Это простейший пример, в котором при слагаемом – единичный коэффициент (а не какое-нибудь число или минус).
Смотрим на знаменатель, здесь всё дело
явно сведется к случаю
.
Начинаем преобразование знаменателя:
Очевидно, что нужно прибавлять 4. И, чтобы
выражение не изменилось – эту же четверку
и вычитать:
Теперь можно применить формулу
:
После того, как преобразование
закончено ВСЕГДА желательно
выполнить обратный ход:
,
всё нормально, ошибок нет.
Чистовое оформление рассматриваемого
примера должно выглядеть примерно
так:
Готово. Подведением «халявной» сложной
функции под знак дифференциала:
,
в принципе, можно было пренебречь
Пример 10
Найти неопределенный интеграл:
Это пример для самостоятельного решения, ответ в конце урока
Пример 11
Найти неопределенный интеграл:
Что делать, когда перед
находится
минус? В этом случае, нужно вынести минус
за скобки и расположить слагаемые в
нужном нам порядке:
. Константу («двойку»
в данном случае) не трогаем!
Теперь в скобках прибавляем единичку.
Анализируя выражение, приходим к выводу,
что и за скобкой нужно единичку –
прибавить:
Тут получилась формула
,
применяем:
ВСЕГДА выполняем на черновике
проверку:
,
что и требовалось проверить.
Чистовое оформление примера выглядит
примерно так:
Усложняем задачу
Пример 12
Найти неопределенный интеграл:
Здесь при слагаемом уже не единичный коэффициент, а «пятёрка».
(1) Если при находится константа, то её сразу выносим за скобки.
(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.
(3) Очевидно, что всё сведется к формуле
.
Надо разобраться в слагаемом
,
а именно, получить «двойку»
(4) Ага,
.
Значит, к выражению прибавляем
,
и эту же дробь вычитаем.
(5) Теперь выделяем полный квадрат. В
общем случае также надо вычислить
,
но здесь у нас вырисовывается формула
длинного логарифма
,
и действие
выполнять
не имеет смысла, почему – станет ясно
чуть ниже.
(6) Собственно, можно применить формулу
,
только вместо «икс» у нас
,
что не отменяет справедливость табличного
интеграла. Строго говоря, пропущен один
шаг – перед интегрированием
функцию
следовало
подвести под знак дифференциала:
,
но, как я уже неоднократно отмечал, этим
часто пренебрегают.
(7) В ответе под корнем желательно раскрыть
все скобки обратно:
Сложно? Это еще не самое сложное в интегральном исчислении. Хотя, рассматриваемые примеры не столько сложны, сколько требуют хорошей техники вычислений.
Пример 13
Найти неопределенный интеграл:
Это пример для самостоятельного решения. Ответ в конце урока.
Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы, но она рассчитана на весьма подготовленных студентов.
