
- •Оглавление
- •1. Правила оформления контрольных работ
- •Раздел «Электростатика» Краткая теория
- •Примеры решения задач
- •1. Закон Кулона.
- •Задачи для самостоятельного решения
- •Раздел «Электромагнетизм» Законы постоянного тока
- •Магнитное поле в вакууме
- •3.Магнитная индукция поля, создаваемого контуром с током:
- •4.Магнитная индукция в центре кругового тока:
- •6Магнитная индукция длинного соленоида:
- •Законы постоянного тока. (Задачи № 1 — 25) Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •3. Сила Ампера. Работа тока в магнитном поле. (Задачи №51 —75)
- •Задача 6
- •Задача 7
- •Задача 8
- •4. Сила Лоренца. Движение частиц в магнитном и электрическом полях. (Задачи № 75 —100)
- •Задача 9
- •Задача 10
- •Задачи для самостоятельного решения Законы постоянного тока
- •Индукция магнитного поля
- •Сила Ампера. Работа тока в магнитном поле
- •Сила Лоренца. Движение частиц в магнитном и электрическом полях
- •Дополнительные задачи
- •Раздел «Электромагнитная индукция» Краткая теория
- •Задачи для самостоятельного решения
- •Справочные материалы
- •1. Некоторые универсальные физические постоянные
- •2. Приставки для обозначения кратных и дольных единиц
Задача 8
Прямолинейный
проводник с длиной активной части 8 см
и током 20 А находится в неоднородном
магнитном поле (рис. 7). Магнитная индукция
меняется по закону
= с·х2
,
где с
= 0,1 Тл/м2
,
—
орт оси OZ.
Какая совершается работа при перемещении
проводника вдоль оси ОХ из точки с
координатой x1=
0 см в точку с координатой
х2
= 20 см (рис. 8)? Какую скорость приобретет
проводник при таком перемещении?
Проводник расположен и перемещается
перпендикулярно линиям индукции. Масса
проводника 10 г.
Рис.7 Рис.8
Д
ано:
Решение
L= 0.08 м; I = 20 А По определению механическая работа
x1=
0 см ; х2
= 20 см
А
=
= с·х2 В нашем случае α = 0°,
c = 0.1 Тл/м2
m = 0,01 кг FA=1LB = IL· 0,1 · x2 (рис. 8), поэтому
A,v-?
A=01IL
По теореме о кинетической энергии работа магнитного поля приводит к изменению кинетической энергии проводника, поэтому
А=
Ответ: А = 4,3·10-4Дж; v = 0,3 м/с.
4. Сила Лоренца. Движение частиц в магнитном и электрическом полях. (Задачи № 75 —100)
Указания
При решении этих задач используются алгоритмы задач по механике с добавлением силы Лоренца.
Задача 9
Альфа-частица c кинетической энергией К = 500 эВ, влетает в однородное магнитное иоле перпендикулярно его силовым линиям, Индукция магнитного поля В = 0,1 Тл. Найти: 1) силу, действующую на частицу; 2) радиус окружности, по которой движется частица; 3) период обращения частицы.
Рис.9
Д ано: Решение
К = 500 эВ = Зная кинетическую энергию альфа-частицы, определим ее скорость v:
=
1,6·10-19·500
Дж К=
(1)
В = 0,1 Тл где m — масса альфа-частицы.
Fл -?R - ?Т -?
На движущуюся частицу с зарядом q в магнитном поле действует сила Лоренца (рис. 9)
Fл = qv B sinα
направленная всегда перпендикулярно скорости частицы (правило левой руки):. В нашем случае угол между вектором скорости частицы и вектором магнитной индукции α = π/2, следовательно:
Fл
=
(2)
Под действием силы Лоренца альфа-частица приобретает центростремительное ускорение
ацс
По второму закону Ньютона:
=
(3)
Период обращения Т ─ это время, в течение которого альфа-частица совершит один оборот по окружности радиусом R:
Учитывая соотношения (1) и (3), получаем:
(4)
Ответ: R = 3,2• 10-2 м; T = 1,3 • 10-6 с; Fл =5·10-15Н.