
- •1.Определение ос. Ос как виртуальная машина и как диспетчер аппаратных и прораммных ресурсов.
- •2.Назначение и основные функции ос. Классификация ос. Варианты классификации.
- •5.Многопроцессорные ос. Симметричная и несимметричная параллельная обработка.
- •3.Эволюция ос. Современные ос, их характеристики и области применения.
- •4.Однозадачные и многозадачные ос. Преимущества многозадачности и ее реализация в ос.
- •Сетевые компоненты ос.
- •Оc с разделением времени. Основные свойства, классы решаемых задач. Примеры современных реализаций.
- •Ос реального времени. Жесткие и нежесткие системы. Интерфейс с внешней средой.
- •Операционные системы unix. Основные линии развития (at&t и bsd unix). Современные реализации для пэвм.
- •Операционные системы Microsoft Windows. Основные версии и реализации, их характеристики и свойства.
- •Современные типы ос для пэвм. Назначение, характеристики и свойства.
- •Функциональная организация (структура) типовой многозадачной ос. Базовые функциональные подсистемы. Ядро и пользовательский слой ос.
- •Архитектурные принципы (принципы разработки и организации) современной мультипрограммной ос. Модульная структура ос.
- •Подсистема планирования (управления) процессов и потоков в ос. Понятие процесса, потока и ресурса. Типы ресурсов. Информационные структуры процесса (потока).
- •Жизненный цикл процесса. Диаграмма состояний. Переходы между состояниями. Диаграмма состояний потоков в ос ms Windows (2000/xp).
- •16. Алгоритмы планирования. Квантование времени (вытеснение). Планирование на основе приоритетов. Приоритетное планирование потоков в ms Windows (2000/xp).
- •Организация взаимодействия (синхронизация) параллельных процессов и потоков. Эффект гонок. Критическая секция. Типовые задачи синхронизации.
- •Системные механизмы для синхронизации потоков. Блокирующие переменные, мьютексы, семафоры.
- •Подсистема управления памятью. Основные функции. Сегментная и страничная программные модели памяти.
- •Концепция виртуальной памяти. Трансляция виртуальных адресов.
- •Иерархическая организация памяти эвм. Принцип кэширования. Устройство кэш-памяти (созу) на процессоре. Алгоритмы работы кэш-памяти.
- •Алгоритмы распределения основной памяти эвм.
- •Страничный обмен (замещение), как метод реализации виртуальной памяти. Таблицы страниц процесса. Свопинг процессов.
- •Структура виртуального адресного пространства процесса в ms Windows nt (2000/xp).
- •Архитектура (модель) ос ms Windows nt (2000/xp). Компоненты ядра и компоненты пользовательского режима. Файловое дерево ос ms Windows на загрузочном томе.
- •Порядок и основные процедуры для загрузки ос на аппаратной платформе ibm-совместимых пэвм. Мультисистемная организация, диспетчеры загрузки ос.
- •Подсистема ввода-вывода ос. Буферизация обмена данными между внешней и основной памятью. Дисковый (системный) кэш.
- •Управление устройствами (аппаратурой) в ос. Независимость программ от устройств. Типы устройств. Драйверная подсистема ос. Модель драйвера в ос Windows.
- •Файловая система ос (fs). Внешняя модель (архитектура) fs. Правила именования и пространства имен в ос Windows. Элементы полного имени. Типы файловых объектов и их атрибуты.
- •Внутренняя организация файловой системы (fs). Системные данные fs на томе. Типы файловых систем.
- •Множественность файловых систем (fs) современных ос. Файловые системы ос Windows: fat12, fet16, fat32, cdfs, ntfs (ntfs5), сетевые fs. Диспетчер файловых систем (ifs ), драйверы fs.
- •Файловая система faTхх. Назначение и организация таблицы распределения файлов. Типы записей в fat.
- •Структура элемента каталога в файловой системе faTхх. Опорные и дополнительные элементы. Метка тома.
- •Поддержка и внутренняя организация длинных имен в ос Windows для файловых систем faTxx. Псевдоним длинного имени в пространстве имен dos.
- •Система операций над файлами. Типы доступа к данным файла. Защита файлов и данных в ос. Обеспечение целостности fs. Восстанавливаемость после сбоев ос и аппаратуры.
- •Файловая система ntfs. Основные свойства и возможности. Обеспечение целостности и отказоустойчивости ntfs. Управление доступом к данным и защита данных в ntfs.
- •Внутренняя организация ntfs на логическом томе. Метафайлы и их назначение. Структура главной таблицы файлов (мfт).
- •Интерфейс прикладного программирования в ос. Библиотеки функций api, системные вызовы. Назначение и реализация в инструментальных системах (системах программирования).
- •Командный (консольный) интерфейс ос. Виртуальная машина ms-dos, интерпретатор команд и его функции. Синтаксис консольных команд. Система команд и их классификация.
- •Внутренние команды командного интерфейса ос. Формат вызова, механизм внутренней реализации. Примеры внутренних команд vdm.
- •Команды-фильтры. Конвейеризация (потоковое сцепление) команд в командном интерфейсе. Перенаправление стандартного ввода-вывода в файлы и другие устройства.
- •Конфигурационные, диагностические и информационные команды ос.
- •Среда окружения командного интерфейса и ее назначение. Команды формирования окружения. Системные переменные.
- •Система команд ос для операций с файлами. Команды для работы с каталогами.
- •Программирование в среде командного интерфейса. Пакетные командные файлы: - внутренние команды, передача параметров.
- •Графический интерфейс конечного пользователя (gui). Концепция рабочего стола. Стандартные элементы оформления и управления в gui. Способы запуска приложений.
- •Защита данных и программ в ос. Модель безопасности ос ms Windows (2000/xp). Механизм учетных записей пользователей, регистрация в системе. Права доступа.
- •Инструменты конфигурирования и настройки ос ms Windows (2000/xp). Панель управления. Системное администрирование.
- •Системная база данных ос ms Windows - реестр. Общая организация, типы параметров. Утилиты для работы с реестром. Экспорт и импорт данных реестра.
- •51. Развертывание (инсталляция) ос на аппаратной платформе. Дистрибутив ос. Утилиты для установки.
- •52. Поддержка сетей в ос ms Windows. Сетевые компоненты, конфигурирование стека сетевых протоколов. Сетевые утилиты ос. Прикладные пользовательские сетевые сервисы.
Системные механизмы для синхронизации потоков. Блокирующие переменные, мьютексы, семафоры.
Для программ, использующих несколько потоков или процессов, необходимо, чтобы все они выполняли возложенные на них функции в нужной последовательности. В среде Windows 9x для этой цели предлагается использовать несколько механизмов, обеспечивающих слаженную работу потоков. Эти механизмы называют механизмами синхронизации.
ОС предлагает несколько синхронизирующих объектов: критический раздел (critical section), мьютекс (mutex), семафор (semaphore) и событие (event). Все они, за исключением критических разделов, являются объектами ядра.
1. Критические разделы. Критический раздел (critical section) - объект, к которому должен обратиться поток перед получением эксклюзивного доступа к каким-либо общим данным. Среди синхронизирующих объектов критические разделы наиболее просты, но применимы для синхронизации потоков лишь принадлежащих одному процессу. Они дают возможность сделать так, чтобы единовременно только один поток получал доступ к определенному региону данных. Критический раздел анализирует значение специальной переменной процесса, которая используется как флаг, предотвращающий исполнение некоторого участка кода несколькими потоками одновременно.
2. Мьютексы. Объекты мьютекс очень похожи на критические разделы за исключением того, что с их помощью можно синхронизировать доступ к общим данным со стороны нескольких процессов, точнее со стороны потоков разных процессов. Кроме того, мьютексы являются объектами ядра. Если поток является владельцем мьютекса, он обладает правом эксклюзивного использования ресурса, который защищается этим мьютексом. Ни один другой поток не может завладеть мьютексом, который уже принадлежит одному из потоков. Если мьютекс защищает какие-то совместно используемые данные, он сможет выполнить свою функцию только в случае, если перед обращением к этим данным каждый из потоков будет проверять состояние этого мьютекса.
3. События. События обычно просто оповещают об окончании какой-либо операции, они также являются объектами ядра. События могут быть мануальными (manual) и единичными (single).
Единичное событие - это скорее общий флаг. Событие находится в сигнальном состоянии, если его установил какой-нибудь поток. Если для работы программы требуется, чтобы в случае возникновения события на него реагировал только один из потоков, в то время как все остальные потоки продолжали ждать, то используют единичное событие. После установления события только один ожидающий поток будет оповещен об этом событии и, соответственно, сможет продолжить работу. После этого система автоматически сбросит событие. Мануальное событие- это не просто общий флаг для нескольких потоков. Оно выполняет несколько более сложные функции. Любой поток может установить это событие или сбросить (очистить) его. Если событие установлено, оно останется в этом состоянии сколь угодно долгое время, вне зависимости от того, сколько потоков ожидают установки этого события. Когда все потоки, ожидающие этого события, получат сообщение о том, что событие произошло, оно автоматически сбросится.
4. Семафоры. Объекты ядра “семафор” используются для учёта ресурсов и служат для ограничения одновременного доступа к ресурсу нескольких потоков. Используя семафор, можно организовать работу программы таким образом, что к ресурсу одновременно смогут получить доступ несколько потоков, однако количество этих потоков будет ограничено. Создавая семафор, указываеся максимальное количество потоков, которые одновременно смогут работать с ресурсом. Если в некоторый момент времени с ресурсом работает меньшее количество потоков, семафор остается в сигнальном состоянии. Как только количество потоков, желающих работать с ресурсом, становится больше допустимого, семафор блокирует доступ к ресурсу. Каждый раз, когда программа обращается к семафору, значение счетчика ресурсов семафора уменьшается на единицу. Когда значение счетчика ресурсов становится равным нулю, семафор недоступен.