
- •1 Методологические основы моделирования сложных систем
- •1.1 Системность
- •Определение понятия системы
- •Основные свойства, обязательные для любой системы
- •Системное мышление
- •Понятия общей теории систем
- •Системный подход
- •1.2 Определение понятий элементов, связей, функций, внешней среды системы Элемент
- •Внешняя среда
- •Функции системы
- •Сложность систем
- •Классификация систем
- •Развитие искусственной системы и ее жизненный цикл
- •1.3 Моделирование
- •Общая методология моделирования
- •Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система
- •Сложная социально-экономическая система
- •2 Методология построения математических моделей
- •2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- •Цели математического моделирования
- •2.2 Общие методы построения математической модели Процесс моделирования
- •Анализ и синтез в моделировании
- •Микроподход и макроподход в исследованиях системы.
- •Формальная запись модели системы
- •Модульное построение моделей
- •Понятие вариационных принципов
- •2.3 Требования к построению модели
- •Адекватность и достоверность модели
- •Равнозначимость внешнего и внутреннего правдоподобия
- •2.4 Этапы построения моделей
- •2.4.1 Постановка задачи моделирования
- •Разработка содержательной модели
- •Разработка концептуальной модели
- •Описание внешних воздействий
- •Декомпозиция системы
- •Подготовка исходных данных для математической модели
- •Содержание концептуальной модели
- •2.4.2 Разработка математической модели
- •Разработка функциональных соотношений
- •Выбор метода решения задачи
- •Проверка и корректировка модели
- •Анализ чувствительности модели
- •Реализация математической модели в виде программ для эвм
- •2.4.3 Практическое использование построенной модели и анализ результатов моделирования
- •3 Математические модели структуры и состояния системы
- •3.1 Модель структуры системы Основные понятия структуры системы
- •Модель состава и структуры системы
- •Виды структур
- •Методология моделирования структуры системы
- •Пример разработки моделей деятельности организации
- •3.2 Модель состояния системы Состояние системы и ее функционирование
- •Формализация процесса функционирования системы
- •3.3 Модель процесса функционирования
- •Установление функциональных зависимостей
- •Неопределенность функционирования системы
- •Пути уменьшения неопределенностей при синтезе системы (проекта)
- •3.4 Анализ функционирования и анализ структуры
- •Пример разработки моделей деятельности организации
- •Функционально – физический анализ технических объектов
- •Пример функционально – физического анализа технических объектов Конструкция бытовой электроплитки
- •Функционально стоимостной анализ
- •4 Виды математических моделей
- •4.1 Классификация математических моделей
- •4.2 Классификация математических моделей в зависимости от оператора модели
- •Линейные и нелинейные модели
- •Обыкновенные дифференциальные модели
- •4.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- •Детерминированные и неопределенные модели
- •Статические и динамические модели
- •Стационарные и нестационарные модели
- •Формализация системы в виде автомата
- •Формализация системы в виде агрегата
- •Моделирование процесса функционирования агрегата
- •Моделирование агрегативных систем
- •Модель сопряжения элементов
- •5 Математические модели физических явлений и процессов. Универсальность моделей
- •5.1 Математические модели на основе фундаментальных законов
- •Теоретический метод составления математических моделей
- •Основные фундаментальные законы механики
- •Работа, энергия, мощность
- •5.2 Уравнения движения
- •Динамика поступательного движения.
- •5.3 Уравнения состояния
- •Термодинамическая система
- •Твердые тела, жидкости и газы
- •6 Универсальность моделей
- •6.1Типовые математические модели элементов и подсистем
- •Модель колебательного процесса
- •Электрическая подсистема
- •Модели элементов гидравлических систем
- •Модели элементов пневматических систем
- •6.2 Модели на основе аналогий
- •Скорость роста какой-либо величины пропорциональна текущему значению этой величины Закон сохранения материи
- •II. Квадратичная зависимость скорости воспроизводства
- •IV. «Равновесная» численность популяции Nр, которую может обеспечить окружающая среда
- •V. Конкуренция двух популяций
- •VI. Изменение зарплаты и занятости
- •VII. Организация рекламной кампании
- •VIII. Двухвидовая борьба в популяции
- •IX. Взаимоотношения «производитель – управленец».
- •7 Математические модели распределения ресурсов в исследовании операций
- •7.1 Моделирование операций распределения ресурсов
- •Формулировка задачи математического программирования
- •7.2 Модели линейного программирования
- •Формулировка общей задачи линейного программирования.
- •Типовые задачи линейного программирования
- •Транспортная задача
- •Примеры сведения практических задач к канонической транспортной задаче
- •7.3 Распределительные задачи линейного программирования
- •Примеры распределительных задач.
- •Распределение транспортных единиц по линиям
- •Задача о назначениях
- •Экономическая интерпретация задач линейного программирования
- •Перевозки взаимозаменяемых продуктов
- •Перевозка неоднородного продукта на разнородном транспорте
- •Задача коммивояжера
- •Задача о ранце
- •Общая задача теории расписаний
- •8 Моделирование процесса управления
- •8.1 Основные определения
- •Формальная запись системы с управлением
- •8.2 Модели систем автоматического управления
- •Математическая модель объекта управления
- •Устойчивость движения систем
- •Определение программного движения и управление движением
- •8.3 Модели автоматизированных систем управления
- •9 Моделирование производственных процессов Общая характеристика производственного процесса
- •9.1 Модели систем массового обслуживания
- •Основные элементы систем массового обслуживания.
- •Характеристики потока
- •Классификация смо
- •Оценка эффективности смо
- •Аналитические и статистические модели
- •9.2 Модели дискретного производственного процесса
- •Операции обработки
- •Операции сборки
- •Операции управления
- •Формализация отклонения течения производственного процесса от нормального
- •Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- •9.3 Имитационное моделирование производственного процесса
- •9.3 Модели непрерывного производственного процесса
- •10 Синтез модели (проекта) системы
- •10.1 Проектирование системы как процесс создания (синтеза) ее модели
- •10.2 Методология проектирования
- •10.3 Формирование концепции системы
- •Системный подход при формировании концепции
- •Типовые проектные процедуры формирования концепции
- •10.4 Эффективность системы Понятие эффективности системы
- •Формирование модели цели системы
- •Выбор критериев и показателей эффективности
- •Основные принципы выбора критериев эффективности:
- •Проблемы многокритериальности
- •Особенности синтеза адаптивных систем
- •10.5 Технология проектирования
- •10.6 Принятие решений в проектировании Особенности процесса принятия решений в проектировании
- •Выбор альтернатив
- •Принятие решений в условиях неопределенности
- •Моделирование принятия решения
- •Прогнозирование в принятии решений
- •10.7 Маркетинг и управление проектом
- •Задачи управления проектами
- •Пример анализа на чувствительность экономической задачи
- •11 Синтез модели технической системы
- •11.1 Особенности синтеза модели технической системы
- •Этапы проектирования
- •Особенности построения моделей при проектировании
- •Формирование технического облика системы
- •Формирование структуры системы
- •Выбор основных проектных параметров системы
- •Формирование множества вариантов системы
- •11.2 Концепции автоматизации проектирования
- •История развития сапр
- •Классификация сапр
- •Стратегическое развитие сапр Современное состояние сапр
- •Направления разработки проектной составляющей сапр
- •Разновидности сапр
- •Математическое и информационное обеспечение сапр
- •12 Особенности синтеза модели информационной системы
- •12.1 Общие свойства информационных систем
- •Файл-серверные информационные системы
- •Клиент-серверные информационные системы
- •Архитектура Интернет/Интранет
- •Хранилища данных и системы оперативной аналитической обработки данных
- •12.2 Схемы разработки проекта
- •1. Предпроектные исследования
- •2 Постановка задачи
- •3 Проектирование системы
- •Архитектура программного обеспечения
- •Подсистема администрирования.
- •Техническая архитектура
- •Организационное обеспечение системы
- •4 Реализация и внедрение системы
- •13 Анализ инвестиционной привлекательности проекта системы
- •13.1 Концепции инвестиционной привлекательности проекта Основные типы инвестиций.
- •Основные экономические концепции инвестиционного анализа
- •Состав работ при инвестиционном проектировании
- •13.2 Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- •Оценка конкурентоспособности
- •13.3 Методы оценки эффективности инвестиций
- •Метод определения чистой текущей стоимости.
- •Метод расчета рентабельности инвестиций
- •Метод расчета внутренней нормы прибыли
- •Расчет периода окупаемости инвестиций
Характеристики потока
Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а в случайные моменты времени. Обслуживание заявок, в общем случае, также длится не постоянное, заранее известное время, а случайное время, которое зависит от многих случайных, порой неизвестных причин. После обслуживания заявки канал освобождается и готов к приему следующей заявки.
Рассмотрение процесса обслуживания отдельной заявки представляет лишь ограниченный интерес. Заявки образуют поток, последовательность поступления.
Источник – первопричина возникновения заявок независимо от их физической природы.
Основной фактор, определяющий протекающие в системе массового обслуживания процессы является поток заявок.
Примеры:
- поток вызовов на телефонной станции;
- поток включений приборов в бытовой электросети;
- поток грузовых составов, поступающих на железнодорожную станцию;
- поток неисправностей (сбоев) вычислительной машины;
- поток выстрелов, направляемых на цель, и т. д.
Входной поток – поток заявок на обслуживание системой.
Основные показатели описания входного потока: характеристики источника заявок, тип заявок, длина интервалов времени между поступлениями требований. Возможные варианты: групповые поступления заявок, ожидание вне системы, поступление заявок согласованными потоками, зависимость входного потока от состояния системы, поступления по графику, но с опозданиями и др. Поступление заявок зависит от внешних обстоятельств, и этот процесс описывается через случайные величины.
Поток событий (в данном случае заявок) - последовательность событий, наступающих одно за другим в какие-то заранее неизвестные, случайные моменты времени. Вид и параметры закона распределения входящего потока определяется характером физических процессов, протекающих в моделируемом объекте. Случайный характер потока заявок и длительности их обслуживания порождает в СМО случайный процесс.
Для решения задач оценки эффективности систем массового обслуживания необходимо этот случайный процесс изучить, т.е. построить и проанализировать его математическую модель.
На эти случайности, связанные с неоднородностью потока заявок, накладываются еще случайности, связанные с задержками обслуживания отдельных заявок. В силу случайного характера моментов поступления заявок процесс их обслуживания представляет собой случайный процесс. Построение математической модели такого процесса и изучение ее даст возможность оценить пропускную способность системы и дать рекомендации по рациональной организации обслуживания.
Такие модели используются при решении большого класса задач: проектирование систем обслуживания, автоматизация производства (ритмичность поступления деталей – потоки заявок к обслуживанию нарушается случайным образом), организация транспорта, сравнительная оценка эффективности систем различной структуры (среднее время простоя, среднее время безотказной работы и др.).
Входной поток заявок однозначно задается последовательностью моментов времени поступления заявок в систему t1, t2, . . . , tk, . . ..
Чтобы описать случайный поток однородных событий как случайный процесс достаточно задать закон распределения, характеризующий последовательность случайных величин t1, t2, . . . tk, Обычно вместо t1, t2, . . . tk, . . задают случайные величины ξ1, ξ2, . . . , ξк, . . ., являющиеся длинами интервалов времени между последовательными моментами tj:
t1 = ξ1,
t2 = ξ1 + ξ2 ,
. . . . . . . .
tк = ξ1 + ξ2 +. . . ξк..
Для задания входного потока достаточно получить последовательность случайных величин ξ1, ξ2, . . , ξi, . . . с заданным законом распределения.
Выходной поток – поток заявок, покидающих систему.
Случайный процесс, протекающий в системе массового обслуживания, состоит в том, что система в случайные моменты времени переходит из одного состояния в другое: меняется число занятых каналов, число заявок в очереди.
Случайные процессы со счетным множеством состояний бывают двух типов: с дискретным временем (переход из состояния в состояние только в определенные, разделенные конечными интервалами, моменты времени) и с непрерывным временем (переход из состояния в состояние может осуществляться в любой момент времени).
В связи со случайностью потока заявок в системах массового обслуживания рассматриваются только процессы с непрерывным временем.
Для того чтобы описать случайный процесс в дискретной системе с непрерывным временем, необходимо проанализировать причины, вызывающие переход системы из состояние в состояние.
При рассмотрении процессов, протекающих в системе с дискретными состояниями и непрерывным временем, часто целесообразно представлять процесс так, как будто изменения состояний системы происходят под действием каких-то потоков событий (поток вызовов, поток неисправностей, поток заявок на обслуживание, поток посетителей и т. д.).
Если с точки зрения обслуживания все заявки потока оказываются равноправными и играет роль лишь сам факт наступления события, состоящего в появлении заявки, то такие потоки называются потоками однородных событий.
Для потока однородных событий получены аналитические решения оценки качества обслуживания.
Каждое событие однородного потока характеризуется моментом времени tj, в который оно наступает. Поток событий, отличающихся только моментами появления, можно представить в виде последовательности точек t1, t2, . . . tj, . .
Если однородный поток событий является детерминированным, то последовательность событий задается перечислением моментов времени наступления события или зависимостью, позволяющее определить текущее значение tj по предыдущим.
Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени.
Для решения многих прикладных задач можно ограничиваться частными случаями потоков.
Простейший поток событий (поток Пуассона) удовлетворяет трем условиям: он стационарен, ординарен и не имеет последействий.
Стационарный поток событий – вероятностные характеристики не зависят от времени - вероятность наступления заданного числа событий в течение интервала времени фиксированной длины зависит только от продолжительности этого интервала, но не зависит от его расположения на временной оси.
Стационарность потока означает его однородность по времени; вероятностные характеристики такого потока не меняются в зависимости от времени.
Для стационарного потока характерна постоянная плотность потока λ - среднее число событий в единицу времени. Или: вероятность рк (t, t0) появления к событий за промежуток времени (t0, t0 +t) не зависит от t0, а зависит только от t и к.
Это не значит, что фактическое число событий, появляющихся в единицу времени, постоянно, поток может иметь местные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный участок времени, остается постоянным для всего рассматриваемого периода.
На практике все процессы стационарны только в определенные промежутки времени. Например, поток заявок на телефонной станции в течение суток не может считаться стационарным, но в течение определенного промежутка времени – может.
Ординарный поток – вероятность появления двух и более событий в течение элементарного интервала времени ∆t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале.
Условие ординарности означает, что заявки поступают в систему поодиночке, а не парами, тройками и т.д.
Поток отказов элементов технических систем (восстанавливаемых элементов), например электрических сетей, можно представить как ординарный поток. Поток обстрелов, которому подвергается воздушная цель в зоне действия ракетной зенитной ПВО, является ординарным, если стрельба ведется одиночными ракетами, и неординарным, если стрельба ведется одновременно двумя или несколькими ракетами.
Если в неординарном потоке события происходят только парами, только тройками и т. д., то можно его рассматривать как ординарный «поток пар», «поток троек» и т. д. Если число событий, образующих «пакет» (группу одновременно приходящих событий), случайно, то тогда приходится наряду с потоком пакетов рассматривать случайную величину X — число событий в пакете, и математическая модель потока становится более сложной.
Поток без последействия: заявки поступают независимо друг от друга – случайные величины являются независимыми, т.е. отсутствует вероятностная зависимость последующего течения событий потока от предыдущего – для любых неперекрывающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.
Пример: последействие отсутствует для потока пассажиров в метро, поскольку отсутствует зависимость между причинами, вызвавшими приход каждого из пассажиров на станцию. Но как только эта зависимость появляется, условие отсутствия последействия нарушается. Например, поток пассажиров, покидающих станцию метро, уже не обладает свойством без последействия, так моменты выхода для пассажиров, прибывших одним поездом, зависимы между собой.
Если такая зависимость появляется, условие отсутствия последействия оказывается нарушенным.
Пример:
поток грузовых поездов, идущих по
железнодорожной ветке. Если по условиям
безопасности они не могут следовать
один за другим чаще, чем через интервал
времени
,
то между событиями в потоке имеется
зависимость, и условие отсутствия
последействия нарушается. Однако, если
интервал
мал
по сравнению со средним интервалом
между поездами, то такое нарушение
несущественно.
Чаще всего выходные потоки заявок имеют последействие, даже если входной его не имеет. Последействие выходного потока необходимо учитывать, когда он является входным для другой системы (многофазное обслуживание, когда одна и та же заявка постепенно переходит из системы в систему).
При суперпозиции (взаимном наложении) достаточно большого числа потоков, обладающих последействием (лишь бы они были стационарны и ординарны), образуется суммарный поток, который можно считать простейшим, и тем точнее, чем большее число потоков суммируется. Дополнительно требуется, чтобы складываемые потоки были сравнимы по интенсивности, т. е., чтобы среди них не было, скажем, одного, превосходящего по интенсивности сумму всех остальных.
Если поток событий не имеет последействия, ординарен, но не стационарен, он называется нестационарным пуассоновским потоком. В таком потоке интенсивность λ (среднее число событий в единицу времени) зависит от времени: λ = λ(t), тогда как для простейшего потока λ=const.
Пуассоновский поток событий (как стационарный, так и нестационарный) тесно связан с известным распределением Пуассона — число событий потока, попадающих на любой участок, распределено по закону Пуассона.
Для простейшего потока (потока Пуассона) вероятность Pk (t) наступления k событий за интервал времени длины t выражается законом распределения Пуассона (вероятность того, что за время t произойдет к событий) - поэтому часто простейший поток называют пуассоновским потоком:
с математическим ожиданием a = λt.
Здесь λ – плотность потока (количество заявок в единицу времени).
Введем состояние системы следующим образом: система находится в состоянии Еs в момент времени t, если к этому моменту в систему поступило s заявок. Вероятность того, что в момент времени t + ∆t система останется в том же состоянии, т.е. что за интервал времени ∆t в систему не поступит ни одной заявки:
S
= 0, 1, 2, …,
разлагая в ряд, имеем wss = 1 – λdt.
Вероятность поступления в систему хотя бы одной заявки wss+1 = λdt.
Такой закон распределения называется
показательным (или экспоненциальным).
Величина
называется
параметром показательного закона. Ввиду
стационарности потока полученные
соотношения имеют то же значение и для
любого другого момента времени.
Поскольку поток простейший (без последействия), наличие события в начале интервала t не влияет на появление события в дальнейшем.
Матрица переходов для простейшего потока и соответствующий граф
Матрица переходов
|
|
Случайный процесс, протекающий в СМО, называется марковским (или процессам без последействия, или процессом без памяти), если вероятность любого состояния СМО в будущем зависит только от ее состояния в настоящем и не зависит от ее состояний в прошлом.
Чтобы случайный процесс был марковским, необходимо и достаточно, чтобы все потоки событий, под воздействием которых происходят переходы системы из состояния в состояние, были пуассоновскими. Поток событий, обладающий свойствами отсутствия последействия (для любых двух непересекающихся промежутков времени, число событий, наступающих за один из них, не зависит от числа событий, наступающий за другой) и ординарностью (вероятность наступления за элементарный - малый промежуток времени более одного события пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события), называется пуассоновским.
В СМО потоками событий являются потоки заявок, потоки "обслуживании" заявок и т. д. Если СМО такова, что хотя бы один из ее потоков не является пуассоновским, то характеристики ее эффективности все же могут быть приближенно оценены с помощью марковской теории массового обслуживания. При этом, чем сложнее СМО, чем больше в ней каналов обслуживания — тем точнее оказываются приближенные формулы, полученные при предположении выполнимости в СМО марковских условий.
Под марковской СМО будем понимать систему, в которой все потоки событий, переводящие ее из состояния в состояние, пуассоновские. Если хотя бы один из потоков не является пуассоновским, то СМО будет называться немарковской.
Например, в системах со строго выполняющимся расписанием, с ленточным конвейером и им подобным поток входящих заявок является регулярным и, следовательно, не является пуассоновским.