
- •1 Методологические основы моделирования сложных систем
- •1.1 Системность
- •Определение понятия системы
- •Основные свойства, обязательные для любой системы
- •Системное мышление
- •Понятия общей теории систем
- •Системный подход
- •1.2 Определение понятий элементов, связей, функций, внешней среды системы Элемент
- •Внешняя среда
- •Функции системы
- •Сложность систем
- •Классификация систем
- •Развитие искусственной системы и ее жизненный цикл
- •1.3 Моделирование
- •Общая методология моделирования
- •Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система
- •Сложная социально-экономическая система
- •2 Методология построения математических моделей
- •2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- •Цели математического моделирования
- •2.2 Общие методы построения математической модели Процесс моделирования
- •Анализ и синтез в моделировании
- •Микроподход и макроподход в исследованиях системы.
- •Формальная запись модели системы
- •Модульное построение моделей
- •Понятие вариационных принципов
- •2.3 Требования к построению модели
- •Адекватность и достоверность модели
- •Равнозначимость внешнего и внутреннего правдоподобия
- •2.4 Этапы построения моделей
- •2.4.1 Постановка задачи моделирования
- •Разработка содержательной модели
- •Разработка концептуальной модели
- •Описание внешних воздействий
- •Декомпозиция системы
- •Подготовка исходных данных для математической модели
- •Содержание концептуальной модели
- •2.4.2 Разработка математической модели
- •Разработка функциональных соотношений
- •Выбор метода решения задачи
- •Проверка и корректировка модели
- •Анализ чувствительности модели
- •Реализация математической модели в виде программ для эвм
- •2.4.3 Практическое использование построенной модели и анализ результатов моделирования
- •3 Математические модели структуры и состояния системы
- •3.1 Модель структуры системы Основные понятия структуры системы
- •Модель состава и структуры системы
- •Виды структур
- •Методология моделирования структуры системы
- •Пример разработки моделей деятельности организации
- •3.2 Модель состояния системы Состояние системы и ее функционирование
- •Формализация процесса функционирования системы
- •3.3 Модель процесса функционирования
- •Установление функциональных зависимостей
- •Неопределенность функционирования системы
- •Пути уменьшения неопределенностей при синтезе системы (проекта)
- •3.4 Анализ функционирования и анализ структуры
- •Пример разработки моделей деятельности организации
- •Функционально – физический анализ технических объектов
- •Пример функционально – физического анализа технических объектов Конструкция бытовой электроплитки
- •Функционально стоимостной анализ
- •4 Виды математических моделей
- •4.1 Классификация математических моделей
- •4.2 Классификация математических моделей в зависимости от оператора модели
- •Линейные и нелинейные модели
- •Обыкновенные дифференциальные модели
- •4.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- •Детерминированные и неопределенные модели
- •Статические и динамические модели
- •Стационарные и нестационарные модели
- •Формализация системы в виде автомата
- •Формализация системы в виде агрегата
- •Моделирование процесса функционирования агрегата
- •Моделирование агрегативных систем
- •Модель сопряжения элементов
- •5 Математические модели физических явлений и процессов. Универсальность моделей
- •5.1 Математические модели на основе фундаментальных законов
- •Теоретический метод составления математических моделей
- •Основные фундаментальные законы механики
- •Работа, энергия, мощность
- •5.2 Уравнения движения
- •Динамика поступательного движения.
- •5.3 Уравнения состояния
- •Термодинамическая система
- •Твердые тела, жидкости и газы
- •6 Универсальность моделей
- •6.1Типовые математические модели элементов и подсистем
- •Модель колебательного процесса
- •Электрическая подсистема
- •Модели элементов гидравлических систем
- •Модели элементов пневматических систем
- •6.2 Модели на основе аналогий
- •Скорость роста какой-либо величины пропорциональна текущему значению этой величины Закон сохранения материи
- •II. Квадратичная зависимость скорости воспроизводства
- •IV. «Равновесная» численность популяции Nр, которую может обеспечить окружающая среда
- •V. Конкуренция двух популяций
- •VI. Изменение зарплаты и занятости
- •VII. Организация рекламной кампании
- •VIII. Двухвидовая борьба в популяции
- •IX. Взаимоотношения «производитель – управленец».
- •7 Математические модели распределения ресурсов в исследовании операций
- •7.1 Моделирование операций распределения ресурсов
- •Формулировка задачи математического программирования
- •7.2 Модели линейного программирования
- •Формулировка общей задачи линейного программирования.
- •Типовые задачи линейного программирования
- •Транспортная задача
- •Примеры сведения практических задач к канонической транспортной задаче
- •7.3 Распределительные задачи линейного программирования
- •Примеры распределительных задач.
- •Распределение транспортных единиц по линиям
- •Задача о назначениях
- •Экономическая интерпретация задач линейного программирования
- •Перевозки взаимозаменяемых продуктов
- •Перевозка неоднородного продукта на разнородном транспорте
- •Задача коммивояжера
- •Задача о ранце
- •Общая задача теории расписаний
- •8 Моделирование процесса управления
- •8.1 Основные определения
- •Формальная запись системы с управлением
- •8.2 Модели систем автоматического управления
- •Математическая модель объекта управления
- •Устойчивость движения систем
- •Определение программного движения и управление движением
- •8.3 Модели автоматизированных систем управления
- •9 Моделирование производственных процессов Общая характеристика производственного процесса
- •9.1 Модели систем массового обслуживания
- •Основные элементы систем массового обслуживания.
- •Характеристики потока
- •Классификация смо
- •Оценка эффективности смо
- •Аналитические и статистические модели
- •9.2 Модели дискретного производственного процесса
- •Операции обработки
- •Операции сборки
- •Операции управления
- •Формализация отклонения течения производственного процесса от нормального
- •Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- •9.3 Имитационное моделирование производственного процесса
- •9.3 Модели непрерывного производственного процесса
- •10 Синтез модели (проекта) системы
- •10.1 Проектирование системы как процесс создания (синтеза) ее модели
- •10.2 Методология проектирования
- •10.3 Формирование концепции системы
- •Системный подход при формировании концепции
- •Типовые проектные процедуры формирования концепции
- •10.4 Эффективность системы Понятие эффективности системы
- •Формирование модели цели системы
- •Выбор критериев и показателей эффективности
- •Основные принципы выбора критериев эффективности:
- •Проблемы многокритериальности
- •Особенности синтеза адаптивных систем
- •10.5 Технология проектирования
- •10.6 Принятие решений в проектировании Особенности процесса принятия решений в проектировании
- •Выбор альтернатив
- •Принятие решений в условиях неопределенности
- •Моделирование принятия решения
- •Прогнозирование в принятии решений
- •10.7 Маркетинг и управление проектом
- •Задачи управления проектами
- •Пример анализа на чувствительность экономической задачи
- •11 Синтез модели технической системы
- •11.1 Особенности синтеза модели технической системы
- •Этапы проектирования
- •Особенности построения моделей при проектировании
- •Формирование технического облика системы
- •Формирование структуры системы
- •Выбор основных проектных параметров системы
- •Формирование множества вариантов системы
- •11.2 Концепции автоматизации проектирования
- •История развития сапр
- •Классификация сапр
- •Стратегическое развитие сапр Современное состояние сапр
- •Направления разработки проектной составляющей сапр
- •Разновидности сапр
- •Математическое и информационное обеспечение сапр
- •12 Особенности синтеза модели информационной системы
- •12.1 Общие свойства информационных систем
- •Файл-серверные информационные системы
- •Клиент-серверные информационные системы
- •Архитектура Интернет/Интранет
- •Хранилища данных и системы оперативной аналитической обработки данных
- •12.2 Схемы разработки проекта
- •1. Предпроектные исследования
- •2 Постановка задачи
- •3 Проектирование системы
- •Архитектура программного обеспечения
- •Подсистема администрирования.
- •Техническая архитектура
- •Организационное обеспечение системы
- •4 Реализация и внедрение системы
- •13 Анализ инвестиционной привлекательности проекта системы
- •13.1 Концепции инвестиционной привлекательности проекта Основные типы инвестиций.
- •Основные экономические концепции инвестиционного анализа
- •Состав работ при инвестиционном проектировании
- •13.2 Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- •Оценка конкурентоспособности
- •13.3 Методы оценки эффективности инвестиций
- •Метод определения чистой текущей стоимости.
- •Метод расчета рентабельности инвестиций
- •Метод расчета внутренней нормы прибыли
- •Расчет периода окупаемости инвестиций
Классификация систем
Классификация - разделение всех изучаемых предметов на отдельные группы в соответствии с каким-либо важным для исследователя признаком фиксирующее закономерные связи между классами объектов в единой системе конкретной отрасли знания.
При классификации различные понятия и соответствующих им явления объединяются в определенные группы, типы с целью установления связей между объектами и классами объектов.
Становление каждой науки связано с созданием классификаций изучаемых объектов, явлений.
Классификация - это процесс упорядочивания информации. В процессе изучения новых объектов в отношении каждого такого объекта делается вывод: принадлежит ли он к уже установленным классификационным группам. В некоторых случаях при этом обнаруживается необходимость перестройки системы классификации.
Классификационные методы позволяют свести многообразие фактов к сравнительно небольшому числу образований (классов, типов, форм, видов, групп и т.д .), разработать систему соответствующих понятий и терминов, обнаружить регулярности, устойчивые признаки и отношения, в конечном счете – эмпирические закономерности, подвести итоги предшествующих исследований и предсказать существование ранее неизвестных объектов или их свойств , вскрыть новые связи и зависимости между уже известными объектами.
В естественных науках представлены как описательные классификации, позволяющие просто привести к удобному виду накопленные результаты, так и структурные классификации, позволяющие выявить и зафиксировать соотношения объектов. Так, в физике описательные классификации – это деление фундаментальных частиц по заряду, спину, массе, по участию в разных типах взаимодействий.
Методологические проблемы классификаций: несовпадение формальных условий и правил построения классификаций и реальной практики.
Требование дискретности признаков порождает в ряде случаев искусственные приемы разбиения целого на дискретные значения признаков; не всегда возможно вынести категорическое суждение о принадлежности объекту признака, при многоструктурности признаков ограничиваются указанием на частоту встречаемости и т.д.
Известно немало примеров удачных классификаций, но никто не владеет рецептом построения удачной классификации.
Классификация – неформализуемый процесс, выполняется итеративно: концептуальное описание классов (содержательная постановка), выделение существенных свойств или функций (что может быть не одно и то же), уточнение и т.д., при этом в основу могут быть положены прототипы (как по свойствам, так и по функциям).
Агрегирование в классы – нетривиальная процедура. Класс может рассматриваться как результат действия оператора вида: «ЕСЛИ <условия на агрегируемые признаки>, ТО <имя класса>. Класс может задаваться совокупностью признаков.
Основная проблема классификации – допустимая минимизация описания системы или явления. При декомпозиции эта проблема решается компромиссом при определении понятия существенности применительно к целям исследований – возникает риск недостаточной полноты или излишней подробности. При агрегировании риск неполноты становится недопустимым (описали не то, что необходимо для исследований) – требуется установить перечень минимальных свойств, учет которых необходим для заданных исследований (определить конфигуратор).
Примеры классификаций - таблица Менделеева, классификации животных, растений и т.д. Для представителей живой природы установлена определенная градация: класс, отряд, род, вид, вариация.
Классификации представляются в виде схем, таблиц, используемых для ориентировки в многообразии понятий или соответствующих объектов.
Составление классификаций должно подчиняться следующим логическим требованиям: в одной и той же классификации необходимо применять одно и то же основание (классификационный признак); объем членов классификации должен равняться объему классифицируемого класса (соразмерность деления); члены классификации должны взаимно исключать друг друга и другие.
Нечеткость понятия системы, многообразие систем приводят к неопределенности принципов классификации, уровней деления. Полной классификации систем нет и не может быть.
В основу классификации могут быть положены различные принципы: происхождение систем, сложность, целевой характер, типы управления, свойства и др.
Классификация моделей и видов моделирования объектов и систем должна выделить в них наиболее общие признаки и свойства реальных систем.
В силу многозначности понятия «модель» в науке и технике не существует единой классификации видов моделирования.
Реальное моделирование подразделяется на натурное и физическое.
Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удаётся выявить закономерности протекания реального процесса. Разновидности натурного моделирования, как комплексные испытания, производственный эксперимент и натурный эксперимент, обладают высокой степенью достоверности.
Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени, а также может рассматриваться без учёта времени.
Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.
Существует много подходов к классификации методов и приемов моделирования.
По способу представления различают три основных вида моделей: описательные (словесное содержательное описание), натурные (макеты, физические модели - изучаемые свойства объекта представлены этими же свойствами, но в другом масштабе), знаковые модели (символьное - представление величин и отношений между ними с помощью букв, чисел, знаков, символов).
По своим свойствам системы могут быть классифицированы по следующим признакам.
По назначению: производящие (реализуют процессы получения некоторых продуктов и услуг), потребляющие (по отношению к производящим), управляющие (организуют и управляют вещественными, энергетическими или информационными процессами), обслуживающие (поддержание заданных пределов работоспособности обслуживаемых систем и восстановление работоспособности при ее утрате), обеспечивающие системы (создают надлежащие условия эксплуатации и использования обеспечиваемых систем).
По характеру функций: специализированные (единственность назначения), многофункциональные (набор нескольких функций в одной и той же структуре), универсальные системы (разнообразный набор функций в одной и той же структуре для решения широкого круга задач, не всегда заранее определенного).
По характеру развития: стабильные и развивающиеся системы (изменяются или не изменяются свойства, структура и функции системы за весь период существования).
По происхождению: естественные, искусственные, смешанные, абстрактные системы, каждая из которых может быть разделена по различным принципам.
Пример двухуровневой классификации систем по происхождению (природной принадлежности):
Естественные (природные): неорганические, биологические, экологические, другие.
Искусственные: материальные, абстрактные (идеальные), абстрактно-материальные.
Смешанные: организационно-технические, социально-экономические, другие.
Организационные системы - системы, содержащие активные элементы (подсистемы), которые имеют возможность самостоятельно принимать решения относительно своего состояния.
В организационных системах структура реализуется в виде совокупности персонала, методов, алгоритмов, технических устройств различного назначения.
При появлении новых задач и, соответственно, функций может оказаться необходимой корректировка структуры. После создания системы возможно уточнение ее структуры и отдельных функций в рамках существующих целей и задач, т.е. возможно обратное влияние структуры на функции.
Экономические системы - системы, в которых действуют стоимостные или натуральные товарные переменные. В качестве экономической системы может выступать отдельная фирма; техническая или технологическая система, учитывающая стоимость технических средств или продукции; отрасль промышленности; экономика государства.
Экономическая система, в которой действуют социальные факторы, называется социально-экономической. В частности, любая макроэкономическая система государства или региона не может не включать социальный сектор и поэтому является социально-экономической.
По характеру связей с внешней средой:
Закрытые системы — какой-либо обмен энергией, веществом и информацией с окружающей средой отсутствует. Имеют четко очерченные, жесткие границы. Для их функционирования необходима защита от воздействия среды.
Открытые системы обмениваются с внешней средой энергией, информацией и веществом. Обмен с внешней средой, способность приспосабливаться к внешним условиям является для открытых систем непременным условием их существования.
По характеру эволюции:
Динамические системы – эволюционируют с течением времени, параметры изменяются со временем, в статических – не изменяются.
Примеры динамических систем: биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.
По степени определенности: разделяются на детерминированные и вероятностные (стохастические) системы. В детерминированной системе по ее предыдущему состоянию и некоторой дополнительной информации можно вполне определенно предсказать ее последующее состояние. В вероятностной системе на основе такой же информации, можно предсказать лишь множество будущих состояний и определить вероятность каждого из них.
По характеру входных воздействий и внутренних состояний системы:
непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические.
Для линейных систем реакция на сумму двух иди более различных воздействий эквивалентна сумме реакций на каждое возмущение в отдельности, для нелинейных – это не выполняется.
Если свойства системы изменяются во времени, то она называется нестационарной, противоположным понятием является понятие стационарной системы. Пример нестационарных систем – это системы, где процессы, например, старения являются на данном интервале времени существенными.
Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг t, то система называется дискретной. Противоположным понятием является понятие непрерывной системы. Например: ЭВМ, электронные часы, электросчетчик – дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. – непрерывные системы.
Возможны классификации по следующим свойствам.
Могут быть использованы и такие основания классификации – экологические, социальные и искусственные системы.
Экологическая система – это весь материальный мир обитания человека, обеспечивает жизнедеятельность живой материи на Земле и состоит из физических, химических и биологических систем.
Физические системы обеспечивают различные взаимодействия тел и полей, что является непрерывным процессом строительства всего мироздания. Механизмами взаимодействия, функционирования и управления этих систем являются объективные физические законы.
Химические системы осуществляют непрерывный обмен веществ в природе, их преобразование и транспортировку из внешней среды в биологические системы и обратно. Источниками развития этих систем являются вещества; механизмами функционирования – законы физики и химии.
Биологические системы координируют жизнедеятельность всех организмов и их отдельных органов, рост организма, строение, размножение, приспособление к внешней среде и т.д. Источником развития биологических систем являются физические, химические и в том числе и сами биологические системы вселенского пространства.
Социальные системы – это реальный мир, в котором живет человек (общество, государство, этнос, коллектив, семья, нация, институты, религия, искусства и т.д.). В этих системах люди, взаимодействуют друг с другом, создают механизмы и законы жизнеобеспечения. Роль социальных систем заключена в формировании мировоззрения, сознания, культуры, системы человеческих взаимоотношений. Социальные системы формируют модели поведения человека.
Искусственные системы – это системы, созданные человеком в результате научно-технического прогресса. Они предназначены для повышения эффективности труда, его механизации, автоматизации и кибернетизации. Источниками “жизнедеятельности” этих систем являются все виды систем, перечисленные выше.
Современный уровень развития науки позволяет говорить о мире как о бесконечной иерархической системе систем, находящихся на разном уровне иерархии и разных стадиях развития.