Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат мод консп 2013-14.doc
Скачиваний:
5
Добавлен:
01.07.2025
Размер:
5.79 Mб
Скачать

Математическая модель объекта управления

Математическая модель САУ (операторное уравнение) устанавливает количественную связь между входом и выходом системы.

Для обозначения входных и выходных сигналов воспользуемся обозначениями, характерными для объекта управления, где входным сигналом является управляющее воздействие u(t), а выходным регулируемая переменная y(t).

В общем случае модель одноканального объекта управления описывается нелинейным дифференциальным уравнением (системой уравнений), связывающим входной сигнал управления u(t) и выходной сигнал состояния объекта y(t):

F(y', y", …, y(n), u', u", …, u(m)) = 0. (1)

Уравнение описывает динамическое состояние ОУ на некотором временном интервале tto, и связывает входные сигналы u(t) и их производные u(m)(t) с выходными сигналами y(t) и их производными y(n)(t). В большинстве случаев операторное уравнение системы принадлежит к классу дифференциальных уравнений или эквивалентных им интегральных уравнений.

Для получения дифференциального уравнения системы в целом обычно составляют описания отдельных ее элементов, т.е. составляют дифференциальные уравнения для каждого входящего в систему элемента (например, для САУ электропечи составляются дифференциальные уравнения усилителя, привода, реостата, электропечи, термопары и элемента сравнения).

Задачей системы автоматического управления является изменение переменной у (t) согласно заданному закону с определенной точностью (с определенной ошибкой).

При проектировании систем автоматического управления необходимо выбрать такие параметры системы, которые обеспечили бы требуемую точность управления. Кроме этого, параметры системы должны обеспечить требования устойчивости и регулярности поведения системы в переходном процессе.

Типовой алгоритм управления, это математическая зависимость между выходным регулирующим воздействием u(t) и входным отклонением ε регулируемой величины y от заданного значения y*. Входной величиной для регулятора является сигнал ε, а выходной – регулирующее воздействие u:

u(t) = U((t),у*(t),...).

В качестве оператора U(•) могут выступать как алгебраические и трансцендентные функции, так и интегро-дифференциальные операторы, булевы функции и пр.

В общем случае процессы, происходящие в системах автоматического управления, описываются нелинейными дифференциальными уравнениями, которые могут быть решены лишь в отдельных частных случаях. Для большого числа систем эти уравнения могут быть линеаризованы.

Переход к линейным дифференциальным уравнениям выполняется операцией линеаризации, при которой переменные уравнения (1) заменяются новыми переменными – отклонениями от некоторого номинального режима (y=y-yн, u= u-uн), начало координат переносится в точку номинального режима, а функция F раскладывается в ряд Тейлора в окрестностях этой точки по частным производным. В результате линеаризации получаем следующую систему линейных уравнений в отклонениях:

A0(t)y(n) + A1(t)y(n-1) +…+ An(t)y = B0(t)u(m) + В1(t)y(m-1) +…+ Bm(t)u. (2)

Порядок системы уравнений равен n по порядку производной y(n)(t), nm, так как при n < m системы технически нереализуемы.

В случае постоянных коэффициентов система называется стационарной.

При этом процессы в САУ будут описываться линейными дифференциальными уравнениями:

an dnу/dtn + an-1 dn-1у/dtn-1 +…. + a0у = bm dmg/dtm +…. + b0g (3)

где aj, bj – постоянные коэффициенты (параметры) модели, a0 > 0, b0 > 0, n - порядок модели, 0 ≤ m < n. Решение уравнений таких стационарных объектов относительно y(t) является главным объектом исследований в классической теории автоматического управления.

Решение даже линейного уравнения связано с вычислительными трудностями. Поэтому для анализа линейных САУ используют метод, основанный на преобразовании Лапласа.

В стационарных системах коэффициенты дифференциального уравнения ai, bi – постоянные величины.

После преобразования Лапласа

(anpn + an-1pn-1 + ….+a0)x(p) = (bmpm + bm-1pm-1 + ….+ b0)g(p),

где:

x(p) – преобразование Лапласа выходного сигнала системы;

g(p) – преобразование Лапласа входного сигнала.

Часто у(p) и g(p) называют изображениями сигналов у(t) и g(t).

Передаточная функция системы.

Для линейного уравнения преобразование Лапласа отношения выходного сигнала Y(p) к входному сигналу U(p) при нулевых начальных условиях не зависит от самих сигналов и называется передаточной функцией системы W(p).

Y(p) = U(p) (b0p(m) + b1p(m-1) +…+ bm) /(a0p(n) + a1p(n-1) +…+ an),

W(p) = (b0p(m) + b1p(m-1) +…+ bm) /(a0p(n) + a1p(n-1) +…+ an), (3.2.5)

Y(p) = W(p) U(p).

Передаточная функция W(p) зависит только от самих дифференциальных уравнений и обладает свойством линейности:

Если Y(p) = Y1(p) + Y2(p), то U(p) = W(p)Y1(p) + W(p)Y2(p) = U1(p)+U2(p).

Если Y(p) = сY(p), то U(p) = W(p) Y(p) = с W(p) Y(p).

В общем случае замкнутая система регулирования с обратной связью рассматривается в структурной форме, приведенной на рис. 3.2.1, где используются следующие обозначения сигналов:

Y(p) = W(p)e(p); W(p) = W1(p)W2(p);

Yос(p) = Wос(p)Y(p); e(p)=U(p)-Yoc(p).

Выражение выходного сигнала состояния системы через входной сигнал управления:

Y(p)=W(p)(U(p)-Wос(p)Y(p);

Y(p)(1± W(p)Wос(p))=W(p)U(p).

Отсюда главная передаточная функция замкнутой системы:

Wзс(p) = Y(p)/U(p) = W(p)/[1 ± W(p) Woc(p)].

Знак плюс или минус определяется типом обратной связи (отрицательная или положительная). Соответственно, выходной сигнал с учетом сигнала дестабилизирующего воздействия f(t), который суммируется с правой частью выражения (3.2.3):

Y(p)=Wзс(p)U(p) + Wf(p)f(p),

где Wf(p) – передаточная функция по возмущению. В замкнутой системе передаточная функция по возмущению определяется как отношение выходной величины, преобразованной по Лапласу, к функции возмущающего воздействия, преобразованной по Лапласу при нулевых начальных условиях. Возмущающее воздействие может быть приложено к любой точке системы.

Wf(p) = Y(p)/f(p) = W2(p)/[1+Woc(p)W(p)].

Передаточная функция по ошибке:

We(p) = e(p)/U(p) = 1/[1 + W(p) Woc(p)].

Передаточная функция по ошибке - основное средство исследования точности САУ. C учетом возмущающего воздействия:

e(p)=We(p)U(p) + Wef(p)f(p),

где Wef(p) - передаточная функция по ошибке и возмущению (от возмущения к ошибке):

Wef(p) = e(p)/f(p) = -W2(p)Woc(p)/[1 + W(p) Woc(p)].

Передаточная функция по обратной связи:

WYoc(p) = Yoc(p)/U(p) = W(p) Woc(p)/[1 + W(p) Woc(p)].

Соединение звеньев

Любая, даже самая сложная, система автоматического управления состоит из элементарных (типовых) звеньев. Характеристики этих звеньев хорошо изучены. Соединяясь между собой различным образом, типовые звенья образуют САУ.

Модель вход-выход строится по известным уравнениям отдельных компонентов (блоков, звеньев). Процедура сводится к преобразованию системы дифференциальных уравнений, описывающих поведение отдельных блоков, к единому уравнению системы управления.

Существуют три основных вида соединений: последовательное, параллельное и с обратной связью.

Последовательное соединение блоков. При последовательном соединении звеньев выходная величина предыдущего звена является входной для последующего. При известных передаточных функциях звеньев, можно записать:

X2(p) = W2(p) X3(p), X1(p) = W1(p) X2(p) = W1(p)W2(p)X3(p).

W(p) = W1(p) W2(p).

Таким образом, систему из неограниченного количества звеньев, включенных последовательно, можно заменить одним эквивалентным звеном с передаточной функцией W(p) равной произведению передаточных функций звеньев.

Параллельное соединение блоков. При параллельном соединении звеньев на все входы подается одна и та же величина, а выходная величина равна сумме выходных величин отдельных звеньев.

X2(p) = W1(p) X4(p), X3(p) = W2(p) X4(p).

X1(p) = X2(p)+X3(p) = (W1(p)+W2(p)) X4 (p).

W(p) = W1(p)+W2(p).

Из последнего выражения следует, что параллельное соединение звеньев эквивалентно одному звену с передаточной функцией, равной сумме передаточных функций, входящих в соединение звеньев.

Система с отрицательной обратной связью. При встречно-параллельном соединении звеньев на вход звена кроме входной подается еще и выходная величина через специальное звено обратной связи. На рисунке звено W1(p) составляет прямую цепь, которая охвачена ОС, звеном W2(p). При этом если сигнал x3 вычитается из входного сигнала x4, то ОС называется отрицательной, а если суммируется, то ОС – положительная. Для отрицательной обратной связи можно записать:

X1(p) = W1(p) X2(p), X3(p) = W2(p) X1(p), X2(p) = X4(p) – X3(p).

Решая эти три уравнения относительно X1(p), находим:

X1(p) = X4(p) W1(p) /(1+ W1(p)W2(p)).

Передаточная функция

W(p) = W1(p) /(1+ W1(p)W2(p)). Полученная передаточная функция может интерпретироваться как передаточная функция последовательно соединенных звеньев с передаточной функцией W1(p) и системы с передаточной функцией:

Ф(p) = 1/(1+Wрс),

где Wрс = W1(p)W2(p) - передаточная функция разомкнутой системы, например, в точке “а”.

При охвате любого звена единичной ОС (т.е. при W2 (p) = 1) разомкнутая система преобразуется в замкнутую с передаточной функцией (из выражения (3.6.1)):

W(p) = W1(p) /(1+ W1(p)).