- •1 Методологические основы моделирования сложных систем
- •1.1 Системность
- •Определение понятия системы
- •Основные свойства, обязательные для любой системы
- •Системное мышление
- •Понятия общей теории систем
- •Системный подход
- •1.2 Определение понятий элементов, связей, функций, внешней среды системы Элемент
- •Внешняя среда
- •Функции системы
- •Сложность систем
- •Классификация систем
- •Развитие искусственной системы и ее жизненный цикл
- •1.3 Моделирование
- •Общая методология моделирования
- •Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система
- •Сложная социально-экономическая система
- •2 Методология построения математических моделей
- •2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- •Цели математического моделирования
- •2.2 Общие методы построения математической модели Процесс моделирования
- •Анализ и синтез в моделировании
- •Микроподход и макроподход в исследованиях системы.
- •Формальная запись модели системы
- •Модульное построение моделей
- •Понятие вариационных принципов
- •2.3 Требования к построению модели
- •Адекватность и достоверность модели
- •Равнозначимость внешнего и внутреннего правдоподобия
- •2.4 Этапы построения моделей
- •2.4.1 Постановка задачи моделирования
- •Разработка содержательной модели
- •Разработка концептуальной модели
- •Описание внешних воздействий
- •Декомпозиция системы
- •Подготовка исходных данных для математической модели
- •Содержание концептуальной модели
- •2.4.2 Разработка математической модели
- •Разработка функциональных соотношений
- •Выбор метода решения задачи
- •Проверка и корректировка модели
- •Анализ чувствительности модели
- •Реализация математической модели в виде программ для эвм
- •2.4.3 Практическое использование построенной модели и анализ результатов моделирования
- •3 Математические модели структуры и состояния системы
- •3.1 Модель структуры системы Основные понятия структуры системы
- •Модель состава и структуры системы
- •Виды структур
- •Методология моделирования структуры системы
- •Пример разработки моделей деятельности организации
- •3.2 Модель состояния системы Состояние системы и ее функционирование
- •Формализация процесса функционирования системы
- •3.3 Модель процесса функционирования
- •Установление функциональных зависимостей
- •Неопределенность функционирования системы
- •Пути уменьшения неопределенностей при синтезе системы (проекта)
- •3.4 Анализ функционирования и анализ структуры
- •Пример разработки моделей деятельности организации
- •Функционально – физический анализ технических объектов
- •Пример функционально – физического анализа технических объектов Конструкция бытовой электроплитки
- •Функционально стоимостной анализ
- •4 Виды математических моделей
- •4.1 Классификация математических моделей
- •4.2 Классификация математических моделей в зависимости от оператора модели
- •Линейные и нелинейные модели
- •Обыкновенные дифференциальные модели
- •4.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- •Детерминированные и неопределенные модели
- •Статические и динамические модели
- •Стационарные и нестационарные модели
- •Формализация системы в виде автомата
- •Формализация системы в виде агрегата
- •Моделирование процесса функционирования агрегата
- •Моделирование агрегативных систем
- •Модель сопряжения элементов
- •5 Математические модели физических явлений и процессов. Универсальность моделей
- •5.1 Математические модели на основе фундаментальных законов
- •Теоретический метод составления математических моделей
- •Основные фундаментальные законы механики
- •Работа, энергия, мощность
- •5.2 Уравнения движения
- •Динамика поступательного движения.
- •5.3 Уравнения состояния
- •Термодинамическая система
- •Твердые тела, жидкости и газы
- •6 Универсальность моделей
- •6.1Типовые математические модели элементов и подсистем
- •Модель колебательного процесса
- •Электрическая подсистема
- •Модели элементов гидравлических систем
- •Модели элементов пневматических систем
- •6.2 Модели на основе аналогий
- •Скорость роста какой-либо величины пропорциональна текущему значению этой величины Закон сохранения материи
- •II. Квадратичная зависимость скорости воспроизводства
- •IV. «Равновесная» численность популяции Nр, которую может обеспечить окружающая среда
- •V. Конкуренция двух популяций
- •VI. Изменение зарплаты и занятости
- •VII. Организация рекламной кампании
- •VIII. Двухвидовая борьба в популяции
- •IX. Взаимоотношения «производитель – управленец».
- •7 Математические модели распределения ресурсов в исследовании операций
- •7.1 Моделирование операций распределения ресурсов
- •Формулировка задачи математического программирования
- •7.2 Модели линейного программирования
- •Формулировка общей задачи линейного программирования.
- •Типовые задачи линейного программирования
- •Транспортная задача
- •Примеры сведения практических задач к канонической транспортной задаче
- •7.3 Распределительные задачи линейного программирования
- •Примеры распределительных задач.
- •Распределение транспортных единиц по линиям
- •Задача о назначениях
- •Экономическая интерпретация задач линейного программирования
- •Перевозки взаимозаменяемых продуктов
- •Перевозка неоднородного продукта на разнородном транспорте
- •Задача коммивояжера
- •Задача о ранце
- •Общая задача теории расписаний
- •8 Моделирование процесса управления
- •8.1 Основные определения
- •Формальная запись системы с управлением
- •8.2 Модели систем автоматического управления
- •Математическая модель объекта управления
- •Устойчивость движения систем
- •Определение программного движения и управление движением
- •8.3 Модели автоматизированных систем управления
- •9 Моделирование производственных процессов Общая характеристика производственного процесса
- •9.1 Модели систем массового обслуживания
- •Основные элементы систем массового обслуживания.
- •Характеристики потока
- •Классификация смо
- •Оценка эффективности смо
- •Аналитические и статистические модели
- •9.2 Модели дискретного производственного процесса
- •Операции обработки
- •Операции сборки
- •Операции управления
- •Формализация отклонения течения производственного процесса от нормального
- •Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- •9.3 Имитационное моделирование производственного процесса
- •9.3 Модели непрерывного производственного процесса
- •10 Синтез модели (проекта) системы
- •10.1 Проектирование системы как процесс создания (синтеза) ее модели
- •10.2 Методология проектирования
- •10.3 Формирование концепции системы
- •Системный подход при формировании концепции
- •Типовые проектные процедуры формирования концепции
- •10.4 Эффективность системы Понятие эффективности системы
- •Формирование модели цели системы
- •Выбор критериев и показателей эффективности
- •Основные принципы выбора критериев эффективности:
- •Проблемы многокритериальности
- •Особенности синтеза адаптивных систем
- •10.5 Технология проектирования
- •10.6 Принятие решений в проектировании Особенности процесса принятия решений в проектировании
- •Выбор альтернатив
- •Принятие решений в условиях неопределенности
- •Моделирование принятия решения
- •Прогнозирование в принятии решений
- •10.7 Маркетинг и управление проектом
- •Задачи управления проектами
- •Пример анализа на чувствительность экономической задачи
- •11 Синтез модели технической системы
- •11.1 Особенности синтеза модели технической системы
- •Этапы проектирования
- •Особенности построения моделей при проектировании
- •Формирование технического облика системы
- •Формирование структуры системы
- •Выбор основных проектных параметров системы
- •Формирование множества вариантов системы
- •11.2 Концепции автоматизации проектирования
- •История развития сапр
- •Классификация сапр
- •Стратегическое развитие сапр Современное состояние сапр
- •Направления разработки проектной составляющей сапр
- •Разновидности сапр
- •Математическое и информационное обеспечение сапр
- •12 Особенности синтеза модели информационной системы
- •12.1 Общие свойства информационных систем
- •Файл-серверные информационные системы
- •Клиент-серверные информационные системы
- •Архитектура Интернет/Интранет
- •Хранилища данных и системы оперативной аналитической обработки данных
- •12.2 Схемы разработки проекта
- •1. Предпроектные исследования
- •2 Постановка задачи
- •3 Проектирование системы
- •Архитектура программного обеспечения
- •Подсистема администрирования.
- •Техническая архитектура
- •Организационное обеспечение системы
- •4 Реализация и внедрение системы
- •13 Анализ инвестиционной привлекательности проекта системы
- •13.1 Концепции инвестиционной привлекательности проекта Основные типы инвестиций.
- •Основные экономические концепции инвестиционного анализа
- •Состав работ при инвестиционном проектировании
- •13.2 Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- •Оценка конкурентоспособности
- •13.3 Методы оценки эффективности инвестиций
- •Метод определения чистой текущей стоимости.
- •Метод расчета рентабельности инвестиций
- •Метод расчета внутренней нормы прибыли
- •Расчет периода окупаемости инвестиций
Примеры сведения практических задач к канонической транспортной задаче
Многие практические задачи, связанные с планированием перевозок, не укладываются в рамки рассмотренной задачи, так как осложнены дополнительными ограничениями.
Суммарный объем производства больше потребления - может быть введен фиктивный пункт потребления Вn+1 с объемом потребления
bn+1 =
bn+1 –
суммарный объем нереализованного
продукта.
Размеры остатков в разных пунктах производства можно регулировать введением штрафа за единицу нереализованного продукта Аi.
Суммарный объем производства меньше потребления, то полное удовлетворение всех пунктов потребления невозможно. В этом случае необходимо организовать перевозки всего произведенного продукта так, чтобы наиболее важные пункты удовлетворялись полнее, и при этом суммарные транспортные расходы должны быть минимальны – вводится величина ущерба rj при неудовлетворении пункта Вj.
Требуется минимизировать суммарные затраты
при условиях
,
,
xij
> 0, yj
= bj
-
,
где
yj – разность между потребностями пункта Вj и поставками в него.
Перевозки с резервированием.
В некоторых районах пунктов производства может возникнуть необходимость в резервировании определенного количества продукта.
Iк – совокупность номеров i-го пункта производства в к-ом районе.
Требуется организовать перевозки таким образом, чтобы в к-ом районе (к=1,…,s) сохранилось не менее Vк единиц продукта.
- Vк ,
.
Общее число продуктов, вывезенных из всех пунктов производства к-го района должно быть не менее, чем на Vк (величину заданного резерва) меньше суммарного количества продукта, произведенного в этом районе.
Задача сводится к задаче транспортного типа
При условиях
- удовлетворение спроса каждого пункта
потребления;
из каждого пункта производства не может быть вывезено продукта
больше, чем производится;
- Vк , - условие резервирования;
xij ≥ 0 , - объем перевозок неотрицательные числа (перевозки запрещены из пунктов потребления в пункты производства).
Пришли к задаче планирования перевозок, обеспечивающего удовлетворение спроса всех пунктов потребления, и гарантирующего сохранение требуемых резервов в каждом районе.
Ограничения на пропускные способности магистралей (в ограниченный промежуток времени) не позволят реализовать оптимальный план перевозок, полученный без учета этих ограничений.
В этом случае в транспортной задаче условие xij ≥ 0 , заменяется неравенством вида 0 ≤ xij ≤ dij, где dij – пропускная способность магистрали (ij), т.е. максимальный объем продукции, который может быть перевезен по этой магистрали за рассматриваемый промежуток времени. Такая задача может быть вообще неразрешимой (когда пропускная способность всех магистралей, ведущих к j-му потребителю меньше объема его потребностей).
Перевозки с промежуточной обработкой.
Задача может быть осложнена наличием промежуточных транспортных узлов, в которых производится обработка груза (перевалка на другой вид транспорта, доработка полуфабриката перед поступлением его в пункт потребления).
А1,…, Аm – пункты производства с объемами производства а1, …, аm
В1,…, Вn – пункты потребления с объемами потребления b1,…, bn
С1,…, Ск – пункты промежуточной обработки.
Возможности пункта промежуточной обработки Сλ ограничены dλ единицами продукта.
Стоимости перевозки единицы полуфабриката продукта из Аi в Сλ составляет Сiλ‘, стоимость перевозки единицы полуфабриката продукта из Сλ в Вj составляет Сλj“.
Составить такой план перевозок, при котором весь полуфабрикат вывозится, полностью обрабатывается, потребности всех пунктов потребления удовлетворяются и при этом транспортные расходы минимальны.
Математическая модель.
Ziλj – количество продукта, доставляемое из пункта Аi в Вj через Сλ.
Транспортная таблица
|
B1 |
B2 |
… |
Bn |
Bn+1 |
Bn+2 |
… |
Bn+k-1 |
Bn+k |
|
А1 |
M |
M |
|
M |
c’11 |
c’12 |
|
c’1,k-1 |
c’1k |
a1 |
А2 |
M |
M |
|
M |
c’21 |
c’21 |
|
c’2,k-1 |
c’2k |
a2 |
... |
|
|
|
… |
|
|
|
|
|
… |
Аm |
M |
M |
|
M |
c’m1 |
c’m2 |
|
c’m?k-1 |
c’mk |
am |
Аm+1 |
c”11 |
c”12 |
|
c”1n |
0 |
M |
|
M |
M |
d1 |
Аm+2 |
c”21 |
c”21 |
|
c”2n |
M |
0 |
|
M |
M |
d2 |
… |
|
|
|
|
|
|
|
|
|
… |
Аm+k-1 |
c”k-1,1 |
c”k-1,2 |
|
c”k-1,n |
M |
M |
… |
0 |
M |
dk-1 |
Аm+k |
c”k1 |
c”k2 |
|
c”kn |
M |
M |
|
M |
0 |
dk |
|
b1 |
B2 |
… |
Bn |
d1 |
d2 |
… |
dk-1 |
dk |
|
Определить план перевозок {Ziλj}, на котором достигается минимум линейной формы
(
Сiλ‘ + Сλj“)
Ziλj
→ min
при условиях
Ziλj = аi
Ziλj = bj
Ziλj
≤ dλ
Ziλj ≥ 0, , ,
Необходимое и достаточное условие разрешимости задачи
аi = bj ≤ dλ
Преобразуем, введя новые переменные
xi,n+λ – количество полуфабриката, поступающее из пункта производства Аi в пункт обработки Сλ.
xm+λ,j - количество полуфабриката, поступающее из пункта обработки Сλ в пункт потребления Вj.
xi,n+λ = Ziλj , , .
xm+λ,j = Ziλj, , .
В новых переменных задача формулируется так: требуется минимизировать
Сiλ‘xi,n+λ + Сλj“ xm+λ,j
при условиях
xi,n+λ = аi , ,
xm+λ,j = bj ,
xi,n+λ = xm+λ,j ≤ dλ
xi,n+λ ≥ 0, xm+λ,j ≥ 0, , , .
