- •1 Методологические основы моделирования сложных систем
- •1.1 Системность
- •Определение понятия системы
- •Основные свойства, обязательные для любой системы
- •Системное мышление
- •Понятия общей теории систем
- •Системный подход
- •1.2 Определение понятий элементов, связей, функций, внешней среды системы Элемент
- •Внешняя среда
- •Функции системы
- •Сложность систем
- •Классификация систем
- •Развитие искусственной системы и ее жизненный цикл
- •1.3 Моделирование
- •Общая методология моделирования
- •Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система
- •Сложная социально-экономическая система
- •2 Методология построения математических моделей
- •2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- •Цели математического моделирования
- •2.2 Общие методы построения математической модели Процесс моделирования
- •Анализ и синтез в моделировании
- •Микроподход и макроподход в исследованиях системы.
- •Формальная запись модели системы
- •Модульное построение моделей
- •Понятие вариационных принципов
- •2.3 Требования к построению модели
- •Адекватность и достоверность модели
- •Равнозначимость внешнего и внутреннего правдоподобия
- •2.4 Этапы построения моделей
- •2.4.1 Постановка задачи моделирования
- •Разработка содержательной модели
- •Разработка концептуальной модели
- •Описание внешних воздействий
- •Декомпозиция системы
- •Подготовка исходных данных для математической модели
- •Содержание концептуальной модели
- •2.4.2 Разработка математической модели
- •Разработка функциональных соотношений
- •Выбор метода решения задачи
- •Проверка и корректировка модели
- •Анализ чувствительности модели
- •Реализация математической модели в виде программ для эвм
- •2.4.3 Практическое использование построенной модели и анализ результатов моделирования
- •3 Математические модели структуры и состояния системы
- •3.1 Модель структуры системы Основные понятия структуры системы
- •Модель состава и структуры системы
- •Виды структур
- •Методология моделирования структуры системы
- •Пример разработки моделей деятельности организации
- •3.2 Модель состояния системы Состояние системы и ее функционирование
- •Формализация процесса функционирования системы
- •3.3 Модель процесса функционирования
- •Установление функциональных зависимостей
- •Неопределенность функционирования системы
- •Пути уменьшения неопределенностей при синтезе системы (проекта)
- •3.4 Анализ функционирования и анализ структуры
- •Пример разработки моделей деятельности организации
- •Функционально – физический анализ технических объектов
- •Пример функционально – физического анализа технических объектов Конструкция бытовой электроплитки
- •Функционально стоимостной анализ
- •4 Виды математических моделей
- •4.1 Классификация математических моделей
- •4.2 Классификация математических моделей в зависимости от оператора модели
- •Линейные и нелинейные модели
- •Обыкновенные дифференциальные модели
- •4.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- •Детерминированные и неопределенные модели
- •Статические и динамические модели
- •Стационарные и нестационарные модели
- •Формализация системы в виде автомата
- •Формализация системы в виде агрегата
- •Моделирование процесса функционирования агрегата
- •Моделирование агрегативных систем
- •Модель сопряжения элементов
- •5 Математические модели физических явлений и процессов. Универсальность моделей
- •5.1 Математические модели на основе фундаментальных законов
- •Теоретический метод составления математических моделей
- •Основные фундаментальные законы механики
- •Работа, энергия, мощность
- •5.2 Уравнения движения
- •Динамика поступательного движения.
- •5.3 Уравнения состояния
- •Термодинамическая система
- •Твердые тела, жидкости и газы
- •6 Универсальность моделей
- •6.1Типовые математические модели элементов и подсистем
- •Модель колебательного процесса
- •Электрическая подсистема
- •Модели элементов гидравлических систем
- •Модели элементов пневматических систем
- •6.2 Модели на основе аналогий
- •Скорость роста какой-либо величины пропорциональна текущему значению этой величины Закон сохранения материи
- •II. Квадратичная зависимость скорости воспроизводства
- •IV. «Равновесная» численность популяции Nр, которую может обеспечить окружающая среда
- •V. Конкуренция двух популяций
- •VI. Изменение зарплаты и занятости
- •VII. Организация рекламной кампании
- •VIII. Двухвидовая борьба в популяции
- •IX. Взаимоотношения «производитель – управленец».
- •7 Математические модели распределения ресурсов в исследовании операций
- •7.1 Моделирование операций распределения ресурсов
- •Формулировка задачи математического программирования
- •7.2 Модели линейного программирования
- •Формулировка общей задачи линейного программирования.
- •Типовые задачи линейного программирования
- •Транспортная задача
- •Примеры сведения практических задач к канонической транспортной задаче
- •7.3 Распределительные задачи линейного программирования
- •Примеры распределительных задач.
- •Распределение транспортных единиц по линиям
- •Задача о назначениях
- •Экономическая интерпретация задач линейного программирования
- •Перевозки взаимозаменяемых продуктов
- •Перевозка неоднородного продукта на разнородном транспорте
- •Задача коммивояжера
- •Задача о ранце
- •Общая задача теории расписаний
- •8 Моделирование процесса управления
- •8.1 Основные определения
- •Формальная запись системы с управлением
- •8.2 Модели систем автоматического управления
- •Математическая модель объекта управления
- •Устойчивость движения систем
- •Определение программного движения и управление движением
- •8.3 Модели автоматизированных систем управления
- •9 Моделирование производственных процессов Общая характеристика производственного процесса
- •9.1 Модели систем массового обслуживания
- •Основные элементы систем массового обслуживания.
- •Характеристики потока
- •Классификация смо
- •Оценка эффективности смо
- •Аналитические и статистические модели
- •9.2 Модели дискретного производственного процесса
- •Операции обработки
- •Операции сборки
- •Операции управления
- •Формализация отклонения течения производственного процесса от нормального
- •Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- •9.3 Имитационное моделирование производственного процесса
- •9.3 Модели непрерывного производственного процесса
- •10 Синтез модели (проекта) системы
- •10.1 Проектирование системы как процесс создания (синтеза) ее модели
- •10.2 Методология проектирования
- •10.3 Формирование концепции системы
- •Системный подход при формировании концепции
- •Типовые проектные процедуры формирования концепции
- •10.4 Эффективность системы Понятие эффективности системы
- •Формирование модели цели системы
- •Выбор критериев и показателей эффективности
- •Основные принципы выбора критериев эффективности:
- •Проблемы многокритериальности
- •Особенности синтеза адаптивных систем
- •10.5 Технология проектирования
- •10.6 Принятие решений в проектировании Особенности процесса принятия решений в проектировании
- •Выбор альтернатив
- •Принятие решений в условиях неопределенности
- •Моделирование принятия решения
- •Прогнозирование в принятии решений
- •10.7 Маркетинг и управление проектом
- •Задачи управления проектами
- •Пример анализа на чувствительность экономической задачи
- •11 Синтез модели технической системы
- •11.1 Особенности синтеза модели технической системы
- •Этапы проектирования
- •Особенности построения моделей при проектировании
- •Формирование технического облика системы
- •Формирование структуры системы
- •Выбор основных проектных параметров системы
- •Формирование множества вариантов системы
- •11.2 Концепции автоматизации проектирования
- •История развития сапр
- •Классификация сапр
- •Стратегическое развитие сапр Современное состояние сапр
- •Направления разработки проектной составляющей сапр
- •Разновидности сапр
- •Математическое и информационное обеспечение сапр
- •12 Особенности синтеза модели информационной системы
- •12.1 Общие свойства информационных систем
- •Файл-серверные информационные системы
- •Клиент-серверные информационные системы
- •Архитектура Интернет/Интранет
- •Хранилища данных и системы оперативной аналитической обработки данных
- •12.2 Схемы разработки проекта
- •1. Предпроектные исследования
- •2 Постановка задачи
- •3 Проектирование системы
- •Архитектура программного обеспечения
- •Подсистема администрирования.
- •Техническая архитектура
- •Организационное обеспечение системы
- •4 Реализация и внедрение системы
- •13 Анализ инвестиционной привлекательности проекта системы
- •13.1 Концепции инвестиционной привлекательности проекта Основные типы инвестиций.
- •Основные экономические концепции инвестиционного анализа
- •Состав работ при инвестиционном проектировании
- •13.2 Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- •Оценка конкурентоспособности
- •13.3 Методы оценки эффективности инвестиций
- •Метод определения чистой текущей стоимости.
- •Метод расчета рентабельности инвестиций
- •Метод расчета внутренней нормы прибыли
- •Расчет периода окупаемости инвестиций
VIII. Двухвидовая борьба в популяции
Модели различных видов соперничества – двухвидовой борьбы в популяциях, гонки вооружений, боевых действий имеют общность методологических подходов, применяемых при получении и анализе этих моделей. По аналогии с осциллятором просматривается задача определения колебаний при взаимодействии двух биологических популяций.
Опишем эволюцию популяций, связанную с сосуществованием различных видов животных в ситуации "хищник – жертва". "Соперничество" жертвы с хищником выражается в изменении численности жертвы, которая в свою очередь сказывается на численности хищника.
Пусть М (t) – число "хищников" (больших рыб), которые питаются "жертвами" (малыми рыбами), число которых обозначим через N (t). Тогда число М (рыб-хищников) будет расти до тех пор, пока у них будет достаточно пищи, т.е. N (рыб-жертв), но в конце концов наступит такая ситуация, когда корма не будет хватать, и число "хищников" М начнет уменьшаться. Это приведет к тому, что число "жертв" (малых рыб) станет снова увеличиваться. Это будет способствовать новому росту числа "хищников" (больших рыб), и цикл повторится.
Математическую модель двухвидовой системы "хищник – жертва" рассмотрим при предположениях:
- численности популяций N (t) и М (t) зависят только от времени;
- в отсутствие взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, число хищников уменьшается (нечем питаться):
dN/dt = а N, dМ/dt = - β М;
- естественная смертность жертвы и естественная рождаемость хищника считаются несущественными;
- эффект насыщения численности обеих популяций не учитывается;
- скорость роста численности жертвы уменьшается пропорционально численности хищников, т.е. величине βМ, темп роста хищников, увеличивается пропорционально численности жертвы, т.е. величине аN.
Скорость изменения N (t) складывается из скорости прироста рождаемости и скорости убывания благодаря соседству с "хищниками". Тогда имеем
dN /dt = (а – β М) N, (8)
где а > 0, β > 0, член β МN описывает вынужденное убывание жертв (естественной смертностью популяции пренебрегаем).
Численность второй популяции ("хищников") растет тем быстрее, чем больше численность первой, а при ее отсутствии уменьшается со скоростью, пропорциональной численности М (t) (тем самым ее рождаемость не учитывается, как и эффект насыщения):
dМ/dt = (-β + а N) М, (8а)
где а > 0, β > 0.
Их этих уравнений по начальным численностям N (0) = N0 и М (0) = М0 определяется численность популяции в любой момент t > 0.
Нелинейную систему уравнений (8), (8а) удобно исследовать в плоскости переменных N, М, для чего первое уравнение поделим на второе:
.
(8б)
Чтобы понять временную динамику функций N (t) и М (t), преобразуем уравнение (8б) к виду
dN (-β + а N) М = dМ (а – β М) N,
поделим обе части на величину N М и перенесем все члены в левую часть:
β dN/N - а1 dN + а dM/M - β1 dМ = 0
Интегрируя, получим
β lnN - а1 N + а lnM - β1 М = const,
где константа определяется по начальным значениям N (0) и М (0).
Или, уравнение (8б) имеет интеграл вида
lnNβ + lne-а1 N + lnMа + lne-β1 М = C.
Потенцируя, получим интеграл в виде
Nβ e-а1 N = С1M-а eβ1 М, С1 > 0.
Ответы на поставленные вопросы:
- если N (0) = N0 и М (0) = М0, то во все моменты времени численности популяций не изменяются;
- при малом (также как и при большом) отклонении от положения равновесия численности как хищника, так и жертвы не возвращаются к равновесным значениям – численности популяций совершают периодические колебания вокруг положения равновесия.
Очевидно, что система находится в равновесии (стационарное, не зависящее от времени решение) при М0 = а β1 и N 0 = β/а1 , когда dN/dt = dМ/dt = 0.
Рассмотрим устойчивость положения системы (8б) – как изменяются с течением времени начальные положения N 0 и М0, вернутся ли они в начальное положение при незначительном отклонении, какими будут их значения при существенном отклонении от начальных значений.
Рассмотрим малые отклонения системы от равновесных значений, т.е. представим решение в виде N = N 0 + n, М = М 0 + m. Подставляя N и М в (8), (8а), получим, отбрасывая члены более высокого порядка малости,
dn/dt = - β1 N 0m, (8с)
dm/dt = - а1 М0n. (8д)
Дифференцируя (8с) по t и подставляя в полученное уравнение функцию dm/dt, определяемую из (8с), придем к уравнению d2 n /dt2 = - а β n,
а
налогичному
по форме базовому уравнению колебаний.
Следовательно, в системе происходят
малые колебания численности с частотой
,
зависящей только от коэффициентов
рождаемости и смертности а и β.
Величина m (t) подчиняется такому же уравнению, причем, если отклонение n (t) равно нулю в начальный момент t = 0, то m (t = 0) имеет максимальную амплитуду, и наоборот. Эта ситуация, когда численности n (t) и m (t) находятся в противофазе, воспроизводится для всех моментов ti = iT/4, i = 1, 2, . . . , (T - период колебаний) и отражает запаздывание реакции численности одной популяции на изменение численности другой.
Любое решение системы (8), (8а) можно интерпретировать как кривую в трехмерном пространстве t, N, M – интегральную кривую. Проекция интегральной кривой на фазовое пространство N, M – фазовая траектория. Производные по времени можно интерпретировать как скорости изменения переменных N и М. Вектор скорости в каждой точке фазового пространства задается величиной правой части соответствующего уравнения в данной точке фазового пространства.
Рассмотрим N и M как координаты точки F (N, M) на плоскости, а изменения N и M как соответствующее движение этой точки F (N, M). При своем движении точка F (N, M) описывает некоторую кривую.
Любые колебания представляют собой движение с переменным ускорением, отклонение, скорость и ускорение в этом случае являются функциями времени. Для любых колебаний характерна периодичность, т.е. движение повторяется по истечении времени Т (период колебаний). Гармонические (синусоидальные) колебания можно представить в виде проекции равномерного движения по окружности.
Н
а
рисунке изображены фазовые траектории
системы, стрелками показано направление
траектории движения с течением времени.
В точке равновесия О численности N и M не меняются, кривой L соответствуют периодические колебания численностей N и M. Так как кривая L замкнутая, то точка F (N, M) вновь и вновь обегает эту кривую, что означает периодическое изменение численностей жертв N и хищников M.
Таким образом, численности жертв и хищников периодически колеблются, определенным образом согласованно.
Модель может быть уточнена учетом насыщения хищников. В этом случае фазовых траекторий уже несколько – в зависимости от соотношений параметров насыщения.
Ниже приведено три рисунка, каждый из которых соответствует некоторому типу соотношений хищник – жертва.
Случай а – хищники вымирают, жертвы достигают равновесного значения.
Случай б - хищники и жертвы сосуществуют, приходя к равновесным постоянным численностям в состоянии равновесия О1.
Случай в – численности хищников и жертв все время меняются, приближаясь со временем к периодическим колебаниям.
