
- •1 Методологические основы моделирования сложных систем
- •1.1 Системность
- •Определение понятия системы
- •Основные свойства, обязательные для любой системы
- •Системное мышление
- •Понятия общей теории систем
- •Системный подход
- •1.2 Определение понятий элементов, связей, функций, внешней среды системы Элемент
- •Внешняя среда
- •Функции системы
- •Сложность систем
- •Классификация систем
- •Развитие искусственной системы и ее жизненный цикл
- •1.3 Моделирование
- •Общая методология моделирования
- •Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система
- •Сложная социально-экономическая система
- •2 Методология построения математических моделей
- •2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- •Цели математического моделирования
- •2.2 Общие методы построения математической модели Процесс моделирования
- •Анализ и синтез в моделировании
- •Микроподход и макроподход в исследованиях системы.
- •Формальная запись модели системы
- •Модульное построение моделей
- •Понятие вариационных принципов
- •2.3 Требования к построению модели
- •Адекватность и достоверность модели
- •Равнозначимость внешнего и внутреннего правдоподобия
- •2.4 Этапы построения моделей
- •2.4.1 Постановка задачи моделирования
- •Разработка содержательной модели
- •Разработка концептуальной модели
- •Описание внешних воздействий
- •Декомпозиция системы
- •Подготовка исходных данных для математической модели
- •Содержание концептуальной модели
- •2.4.2 Разработка математической модели
- •Разработка функциональных соотношений
- •Выбор метода решения задачи
- •Проверка и корректировка модели
- •Анализ чувствительности модели
- •Реализация математической модели в виде программ для эвм
- •2.4.3 Практическое использование построенной модели и анализ результатов моделирования
- •3 Математические модели структуры и состояния системы
- •3.1 Модель структуры системы Основные понятия структуры системы
- •Модель состава и структуры системы
- •Виды структур
- •Методология моделирования структуры системы
- •Пример разработки моделей деятельности организации
- •3.2 Модель состояния системы Состояние системы и ее функционирование
- •Формализация процесса функционирования системы
- •3.3 Модель процесса функционирования
- •Установление функциональных зависимостей
- •Неопределенность функционирования системы
- •Пути уменьшения неопределенностей при синтезе системы (проекта)
- •3.4 Анализ функционирования и анализ структуры
- •Пример разработки моделей деятельности организации
- •Функционально – физический анализ технических объектов
- •Пример функционально – физического анализа технических объектов Конструкция бытовой электроплитки
- •Функционально стоимостной анализ
- •4 Виды математических моделей
- •4.1 Классификация математических моделей
- •4.2 Классификация математических моделей в зависимости от оператора модели
- •Линейные и нелинейные модели
- •Обыкновенные дифференциальные модели
- •4.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- •Детерминированные и неопределенные модели
- •Статические и динамические модели
- •Стационарные и нестационарные модели
- •Формализация системы в виде автомата
- •Формализация системы в виде агрегата
- •Моделирование процесса функционирования агрегата
- •Моделирование агрегативных систем
- •Модель сопряжения элементов
- •5 Математические модели физических явлений и процессов. Универсальность моделей
- •5.1 Математические модели на основе фундаментальных законов
- •Теоретический метод составления математических моделей
- •Основные фундаментальные законы механики
- •Работа, энергия, мощность
- •5.2 Уравнения движения
- •Динамика поступательного движения.
- •5.3 Уравнения состояния
- •Термодинамическая система
- •Твердые тела, жидкости и газы
- •6 Универсальность моделей
- •6.1Типовые математические модели элементов и подсистем
- •Модель колебательного процесса
- •Электрическая подсистема
- •Модели элементов гидравлических систем
- •Модели элементов пневматических систем
- •6.2 Модели на основе аналогий
- •Скорость роста какой-либо величины пропорциональна текущему значению этой величины Закон сохранения материи
- •II. Квадратичная зависимость скорости воспроизводства
- •IV. «Равновесная» численность популяции Nр, которую может обеспечить окружающая среда
- •V. Конкуренция двух популяций
- •VI. Изменение зарплаты и занятости
- •VII. Организация рекламной кампании
- •VIII. Двухвидовая борьба в популяции
- •IX. Взаимоотношения «производитель – управленец».
- •7 Математические модели распределения ресурсов в исследовании операций
- •7.1 Моделирование операций распределения ресурсов
- •Формулировка задачи математического программирования
- •7.2 Модели линейного программирования
- •Формулировка общей задачи линейного программирования.
- •Типовые задачи линейного программирования
- •Транспортная задача
- •Примеры сведения практических задач к канонической транспортной задаче
- •7.3 Распределительные задачи линейного программирования
- •Примеры распределительных задач.
- •Распределение транспортных единиц по линиям
- •Задача о назначениях
- •Экономическая интерпретация задач линейного программирования
- •Перевозки взаимозаменяемых продуктов
- •Перевозка неоднородного продукта на разнородном транспорте
- •Задача коммивояжера
- •Задача о ранце
- •Общая задача теории расписаний
- •8 Моделирование процесса управления
- •8.1 Основные определения
- •Формальная запись системы с управлением
- •8.2 Модели систем автоматического управления
- •Математическая модель объекта управления
- •Устойчивость движения систем
- •Определение программного движения и управление движением
- •8.3 Модели автоматизированных систем управления
- •9 Моделирование производственных процессов Общая характеристика производственного процесса
- •9.1 Модели систем массового обслуживания
- •Основные элементы систем массового обслуживания.
- •Характеристики потока
- •Классификация смо
- •Оценка эффективности смо
- •Аналитические и статистические модели
- •9.2 Модели дискретного производственного процесса
- •Операции обработки
- •Операции сборки
- •Операции управления
- •Формализация отклонения течения производственного процесса от нормального
- •Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- •9.3 Имитационное моделирование производственного процесса
- •9.3 Модели непрерывного производственного процесса
- •10 Синтез модели (проекта) системы
- •10.1 Проектирование системы как процесс создания (синтеза) ее модели
- •10.2 Методология проектирования
- •10.3 Формирование концепции системы
- •Системный подход при формировании концепции
- •Типовые проектные процедуры формирования концепции
- •10.4 Эффективность системы Понятие эффективности системы
- •Формирование модели цели системы
- •Выбор критериев и показателей эффективности
- •Основные принципы выбора критериев эффективности:
- •Проблемы многокритериальности
- •Особенности синтеза адаптивных систем
- •10.5 Технология проектирования
- •10.6 Принятие решений в проектировании Особенности процесса принятия решений в проектировании
- •Выбор альтернатив
- •Принятие решений в условиях неопределенности
- •Моделирование принятия решения
- •Прогнозирование в принятии решений
- •10.7 Маркетинг и управление проектом
- •Задачи управления проектами
- •Пример анализа на чувствительность экономической задачи
- •11 Синтез модели технической системы
- •11.1 Особенности синтеза модели технической системы
- •Этапы проектирования
- •Особенности построения моделей при проектировании
- •Формирование технического облика системы
- •Формирование структуры системы
- •Выбор основных проектных параметров системы
- •Формирование множества вариантов системы
- •11.2 Концепции автоматизации проектирования
- •История развития сапр
- •Классификация сапр
- •Стратегическое развитие сапр Современное состояние сапр
- •Направления разработки проектной составляющей сапр
- •Разновидности сапр
- •Математическое и информационное обеспечение сапр
- •12 Особенности синтеза модели информационной системы
- •12.1 Общие свойства информационных систем
- •Файл-серверные информационные системы
- •Клиент-серверные информационные системы
- •Архитектура Интернет/Интранет
- •Хранилища данных и системы оперативной аналитической обработки данных
- •12.2 Схемы разработки проекта
- •1. Предпроектные исследования
- •2 Постановка задачи
- •3 Проектирование системы
- •Архитектура программного обеспечения
- •Подсистема администрирования.
- •Техническая архитектура
- •Организационное обеспечение системы
- •4 Реализация и внедрение системы
- •13 Анализ инвестиционной привлекательности проекта системы
- •13.1 Концепции инвестиционной привлекательности проекта Основные типы инвестиций.
- •Основные экономические концепции инвестиционного анализа
- •Состав работ при инвестиционном проектировании
- •13.2 Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- •Оценка конкурентоспособности
- •13.3 Методы оценки эффективности инвестиций
- •Метод определения чистой текущей стоимости.
- •Метод расчета рентабельности инвестиций
- •Метод расчета внутренней нормы прибыли
- •Расчет периода окупаемости инвестиций
Детерминированные и неопределенные модели
Закономерности, описывающие процессы и явления объективного мира, можно условно разделить на две группы: однозначно определенные (детерминированные) и находящиеся в условиях неопределенности.
В зависимости от способа задания параметров, исходной информации, начальных условий и способа нахождения характеристик системы, математические модели можно подразделить на два больших класса: детерминированные и неопределенные (вероятностные, стохастические).
В детерминированных моделях все исходные данные, ограничения и целевая функция (т.е. некоторое соотношение, количественно характеризующее поставленную перед системой цель) задаются в виде конкретных чисел, векторов или числовых функций.
В детерминированных моделях используются различные классические методы математики: дифференциальные, линейные, разностные и интегральные уравнения, операторы для сведения к алгебраическим моделям и др. При совместном рассмотрении этих соотношений состояния системы в заданный момент времени однозначно определяются через параметры системы, входную информацию и начальные условия.
По степени математической абстракции детерминированные модели можно разделить на сложные и упрощенные.
Сложные модели описывают все причинные связи какой-то реальной системы и позволяют точно прогнозировать поведение системы в зависимости от изменения переменных (или параметров).
Упрощенные модели описывают только существенные зависимости (идеализированные модели).
Между этими двумя моделями существует ряд моделей, отличающихся степенью детализации. На практике чаще всего применяются упрощенные модели с разной степенью детализации. При этом считается, что имеются существенные и несущественные факторы: существенные учитываются, несущественные отбрасываются. Между принятыми в модели факторами и результирующими показателями устанавливается жесткая детерминированная связь. Широкое распространение идеализированных моделей вызвано их простотой и возможностью логического обоснования.
Детерминированные системы – системы, процессы в которых взаимосвязаны так, можно проследить цепь причин и следствий.
К детерминированным относятся те закономерности, которые по заданным с определенной точностью характеристикам входных воздействий позволяют установить вполне определенный (детерминированный) отклик (реакцию) выходных воздействий исследуемого объекта.
В статическом режиме детерминированные системы описываются алгебраическими уравнениями, в динамическом режиме – дифференциальными уравнениями.
Модель детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае модель недетерминированная, стохастическая (вероятностная).
Приведенные выше физические модели — детерминированные. Если в модели S(p) = g(p)t2/2, 0 < t < 100 мы учли бы случайный параметр — порыв ветра с силой р при падении тела, например, так: S = gt2/2, 0 < t < 100, то мы получили бы стохастическую модель (уже не свободного) падения.
При решении одних задач случайные составляющие практически не влияют на результат и в модели не учитываются. В других задачах решение может быть получено только при учете случайных составляющих или различных неопределенностей, и соответствующие математические методы закладываются в модель.
Достаточность детерминированной модели или необходимость учета неопределенностей иногда очевидна, иногда переход к модели, учитывающей неопределенность, происходит вследствие неудовлетворенности результатами, полученными на детерминированной модели.
Неопределенность понимается в том смысле, что соответствующие характеристики системы находятся в условиях приближения и неполноты информации. В «чистом виде» неопределенных процессов нет - описание неопределенности может быть разным в зависимости от количества и качества имеющейся информации (имеется не вся необходимая информация, элементы могут быть описаны по аналогам, что не всегда соответствует целям исследований). Характеристики системы зависят от большого количества различных факторов (некоторые из них могут быть вообще неизвестны), выбор для моделирования существенных факторов, влияющие на систему, может иметь неоднозначный характер (как объективный, так и субъективный).
В зависимости от типа неопределенности – методы описания неопределенных данных, включая вероятностную, нечеткую и интервальную модели, - каждая из них имеет свои методы анализа и область применения.
Математически неопределенность может быть описана стохастически, статистически, с позиций нечетких множеств.
Стохастическое описание используется тогда, когда неопределенные параметры носят вероятностный (случайный) характер. При этом необходимо, чтобы был определен закон распределения таких случайных параметров.
В стохастической системе состояние и выход – случайные величины, операторы перехода и выхода не определяют конкретные значения состояния и выхода, как в детерминированном случае, а лишь устанавливают вероятности их реализации.
Статистическое описание является частным случаем стохастического – заданы только выборочные оценки каких-либо характеристик случайной величины или наборы некоторых случайных параметров.
Нечеткая модель основана на понятии нечеткого множества (нечеткая переменная и ее функция принадлежности, задающая степень принадлежности конкретного значения величины х некоторому множеству s).
При описании с позиций нечетких множеств неопределенный параметр задается некоторым множеством возможных его значений, определяющих степень принадлежности объекту (например, при выделении элементов из внешней среды). Нечеткое множество описывает систему с нечеткими, размытыми границами. Обычно функция принадлежности задается экспертным путем на основе информации об источниках неопределенности переменной х.
Интервальная модель – неопределенность параметра х описывается его возможными значениями в виде [x] = [xmin; xmax]. Внутри интервала не задается никакой вероятностной меры – все значения внутр интервала предполагаются равновозможными (не путать с равновероятными).
Любому реальному процессу присущи случайные флюктуации (отклонения от средних значений). Однако выбор детерминированной или вероятностной математической модели зависит от того, учитываются ли случайные факторы. Выделение детерминированных моделей в отдельный класс объясняется широким их применением и разнообразием математических методов решения детерминированных задач.
Если хотя бы один параметр модели или ограничительная функция имеет в качестве своих значений случайный вектор или случайную величину, то это случайная (стохастическая) модель. В этом случае под однозначностью определения характеристик моделируемого процесса понимается однозначное определение распределений вероятностей для характеристик процесса при заданных распределениях вероятностей для начальных условий и возмущений.
Стохастический характер модели связан с наличием в объекте и среде различных неконтролируемых, но существенных факторов, которые можно моделировать статистически. Состояние системы в этом случае Y=F(X, U, E(t)), где E(t) – случайный процесс, моделирующий имеющуюся неопределенность объекта и среды. Эта неопределенность может быть связана как с быстрым изменением параметров объекта, так и с помехами, накладывающимися на измеряемые значения сигналов на входе и выходе объекта.
Стохастический объект и его модель ведут себя неоднозначно в одинаковых ситуациях, что моделируется случайным вектором E(t), статистические свойства которого должны быть заданы. В простейшем случае Y=F(X, U)+E(t).
Примером стохастического объекта является любой биологический организм, который в одинаковых условиях ведет себя по-разному. В этом случае Y описывает поведение объекта, которое строго зависит от внешних условий, а все отклонения от этого регулярного поведения образуют «случайную помеху» E(i).
Переход от детерминированной модели к стохастической осуществляется таким образом, чтобы она отражала в себе случайный характер данных и самой модели. Способ перехода выбирается в зависимости от сведений об изучаемой модели: уверенности в правильности и надежности данных и модели. При этом возможно, что эти сведения ошибочны.
В общем случае для стохастических объектов оператор является случайным (например коэффициенты линейного дифференциального уравнения, весовые функции и т.д.).
В зависимости от учета в модели случайностей при работе и управлении объектом моделирования непрерывности или дискретности процесса рассматривают дискретно-детерминированные, дискретно-детерминированные, непрервно-детерминированные, дискретно-стохастические, непрерывно-стохастические модели.