Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат мод консп 2013-14.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.79 Mб
Скачать

4.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели

Процесс функционирования системы может протекать непрерывно или дискретно. Решение о дискретности или непрерывности модели принимается на этапе постановки задачи также на рациональном уровне.

Непрерывная система функционирует в непрерывном времени (интервал ее функционирования T = [t0, tk] представляет собой отрезок оси действительных чисел, заданный началом t0 и концом tk), непрерывно изменяется состояние системы (непрерывны операторы α и β). Малые изменения входных воздействий приводят к такого же порядка малым изменениям состояния системы и выходных воздействий.

Модель непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка.

Модель S = gt2/2, 0 < t < 100 непрерывна на промежутке времени (0; 100).

Непрерывные модели применяются при изучении систем, связанных с непрерывными процессами, которые описываются с помощью систем дифференциальных уравнений, задающих скорость изменения переменных системы во времени. Непрерывные модели можно описать с помощью конечно-разностных уравнений, которые в пределе переходят в соответствующие дифференциальные уравнения.

Дискретная система функционирует в дискретном временном пространстве и определяется дискретными состояниями - изменения ее состояния происходят лишь в дискретные моменты времени (дискретный интервал функционирования).

Дискретными могут быть системы, для которых дискретным является или только время, или только состояния. Это широкий и практически важный класс систем – в него входят все дискретные (цифровые, измерительные, управляющие и вычислительные, в том числе ЭВМ) устройства.

Дискретность временного пространства означает, что явления, сопровождающие изменения состояния системы, могут происходить лишь в моменты времени, образующие некоторое дискретное множество, в котором моменты времени можно пронумеровать. В частности, переходы системы из одного состояния в другое могут осуществляться в целочисленные моменты времени. Общий случай сводится к этому частному введением целочисленной нумерации моментов возможных изменений состояний.

Если рассматривать только t - 0, 1, 2, ..., 10 (с), то модель S1 = gt2/2, или числовая последовательность S0 = 0, S = g/2, S2 = 2g, S3 = 9g/2, ..., S10= 50g, может служить дискретной моделью движения свободно падающего тела.

Непрерывная система может рассматриваться как дискретная. Это достигается путем учета ее состояния лишь в отдельные моменты времени и округления их значений до целых единиц.

Системы с дискретными состояниями характеризуются тем, что в любой момент времени можно однозначно определить, в каком именно состоянии находится система. Для такой идентификации обязательно нужно знать тот признак, который отличает одно состояние системы от другого. Например, при исследовании систем массового обслуживания в качестве такого признака обычно используют число заявок в системе. Соответственно, изменение числа заявок в системе интерпретируется как переход системы в новое состояние.

Если же не удается подобрать такой признак, либо его текущее значение невозможно зафиксировать, то систему относят к классу систем с непрерывным множеством состояний.

Смена состояний может происходить либо в фиксированные моменты времени, множество которых дискретно (например, поступление новых заявок на обслуживание), либо непрерывно (изменение температуры тела при нагревании). В соответствии с этим различают системы с дискретным временем переходов (смены состояний) и системы с непрерывным временем переходов (точнее, «живущие» в непрерывном времени).

Дискретными могут быть системы с дискретным вмешательством случая – эти системы почти всегда ведут себя как непрерывные и только в дискретные моменты времени испытывают случайные воздействия. По условиям перехода из одного состояния в другое системы могут быть детерминированными или стохастическими.

Изучением свойств непрерывного характера занимается классическая математика. В дискретной математике отказываются от основополагающих понятий классической математики – предела и непрерывности.

Использование классической или дискретной математики зависит от задач исследований – какая модель явления рассматривается – дискретная или непрерывная. Основные разделы дискретной математики: математическая логика, вычислительная математика (численное интегрирование), теория графов (задачи анализа структур, экономические задачи, электротехнические задачи – трассировка), теория кодирования (хранение, обработка, передача информации), теория функциональных систем (описание функционирования сложных систем по функционированию их компонент, правила построения сложных управляющих систем).