Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат мод консп 2013-14.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.79 Mб
Скачать

Сложная социально-экономическая система

Под экономической системой понимается любая система, в которой действуют стоимостные или натуральные товарные переменные.

В качестве экономической системы может выступать отдельная фирма; техническая или технологическая система, учитывающая стоимость технических средств или продукции; отрасль промышленности; экономика государства.

Экономическая система, в которой действуют социальные факторы, называется социально-экономической. В частности, любая макроэкономическая система государства или региона не может не включать социальный сектор и поэтому является социально-экономической1.

Международный стандарт ИСО 9000:2000 определяет организацию как группу работников и необходимых средств с распределением ответственности, полномочий и взаимоотношений.

Можно дать и другое определение: организация - это систематизированное, сознательное объединение действий людей, преследующих достижение конкретных целей.

Связи системы-организации с внешней средой.

Создаваемая модель должна давать ответ на следующие вопросы:

• Кто из сотрудников организации должен выполнять конкретные функции?

• При каких условиях нужно выполнять функцию?

• Что должен сделать сотрудник в рамках данной функции?

• Каким образом следует ее выполнять?

• Какие ресурсы при этом необходимы?

• Каковы результаты выполнения функции?

• Какие информационные средства нужны?

• Каким образом все это согласовать?

• Как все это можно осуществить наиболее эффективно?

• Как можно изменить или построить бизнес-процесс?

• Как снизить риск и повысить эффективность изменений?

2 Методология построения математических моделей

2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения

Термин «математическое моделирование» охватывает методологически малосвязанные разработку модели и ее использование. Иногда моделированием называется каждый из этих двух этапов в отдельности.

Математическое моделирование - процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта.

Математические модели относятся к знаковым моделям.

Один из аспектов математического моделирования как способа познания - изучение системы, явления с помощью вычислительного эксперимента (в таком понимании термин "вычислительный эксперимент" может быть синонимом термина "математическое моделирование").

Многие задачи исследования систем трудно достаточно хорошо формализовать и свести к математическим моделям, позволяющим ставить и решать поставленные задачи. Системный исследователь должен уметь формализовать в математических терминах конкретную задачу исследований - разработать математическую модель. Непонимание (или неумение четко поставить задачу) часто приводит к «победе математики над разумом».

Математическая модель как средство познания, исследования реального мира формируется на основании общей методологии системных исследований.

Математическая модель – описание в виде математических соотношений (например, формул, уравнений, неравенств, логических условий, операторов) состояния, изменения, протекания процессов в системе или явлении (в том числе функционирования системы), в зависимости от параметров системы, входных сигналов, начальных условий и времени.

Математическая модель — это „эквивалент“ объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям.

Математическая модель - абстрактное математическое представление процесса, устройства или теоретической идеи; оно использует набор переменных, чтобы представлять входы, выходы и внутренние состояния, а также множества уравнений и неравенств для описания их взаимодействия. (Определение основано на идеализации «вход — выход — состояние», заимствованной из теории автоматов).

Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, требуемой достоверности и точности решения этой задачи. Математическая модель отражает именно те особенности, которые необходимо исследовать для решения поставленной задачи.

Обычно математическая модель только приближенно описывает поведение реальной системы, являясь ее абстракцией, так как знания о реальной системе никогда не бывают абсолютными, а гипотезы часто вынужденно или намеренно не учитывают некоторые факторы.

Для поддержки математического моделирования разработаны компьютерные системы моделирования, например, Matlab, Matcad и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Универсальность моделей: принципиально разные реальные явления могут описываться одной и той же математической моделью. На одной и той же модели могут быть изучены большое число вариантов её поведения (путем изменения параметров). Например, колебательные процессы, имеющие совершенно разную природу описываются одинаковой математической моделью - мы изучаем сразу целый класс описываемых ею явлений.

Основная задача математического моделирования: по заданным входным параметрам найти значения выходных параметров системы.

Модель — закономерность, преобразующая входные значения в выходные: Y = M(X). Под этим можно понимать таблицу, график, выражение из формул, закон (уравнение) и т. д. Это вопрос способа записи закономерности. Y - некоторый интересующий исследователя показатель.

На этом основании при определении понятия "математическая модель" используется широкое понятие оператора – функция, алгоритм, совокупность правил, обеспечивающие установление выходных параметров по заданным входным параметрам.

Математическую модель можно рассматривать как некоторый математический оператор и сформулировать понятие математической модели следующим образом.

Математическая модель – любой оператор (правило) А, позволяющий по значениям входных параметров x установить соответствующие выходные значения параметров y системы:

А: xy, x X, y Y.

Такое широкое определение включает в себя не только все многообразие математических моделей, но и информационные модели – процедуру поиска данных в базе данных можно представить в виде некоторого оператора. В таком контексте информационная модель – специфическая форма математической модели.

Основные понятия в моделировании систем определяются из соответствия аналогичным понятиям системы: элемент системы, связь, внешняя среда.

Моделирование как метод исследования имеет следующую структуру: постановка задачи, создание модели, исследование модели, перенос знания с модели на оригинал.

Модель может быть сосредоточена на функциях системы (функциональная модель) или на ее объектах (модели данных).

Функциональные модели выделяют события в системе, представляют с требуемой степенью детализации систему функций, которые в свою очередь отражают свои взаимоотношения через объекты системы.

Модели данных выделяют объекты системы, которые связывают функции между собой и с их окружением и представляют собой подробное описание объектов системы, связанных системными функциями.