
- •2. Ускорение материальной точки. Нормальное и тангенциальное ускорение.
- •3. Угловая скорость и угловое ускорение материальной точки и их связь с линейной скоростью и ускорением.
- •4. Законы динамики материальной точки (законы Ньютона).
- •5. Упругие свойства твердых тел. Закон Гука, напряжение, предел прочности.
- •7. Трение покоя, трения скольжения, трение качения.
- •8. Внешние и внутренние силы. Закон сохранения импульса.
- •9. Работа переменной силы. Кинетическая энергия и ее связь с работой сил.
- •10. Потенциальная энергия.
- •11. Закон сохранения механической энергии. Закон сохранения связан с однородностью времени, т. Е. Инвариантностью физ. Законов относительно выбора начала отсчета времени.
- •12. Применение законов сохранения к столкновению упругих и неупругих тел.
- •14.Момент импульса относительно точки. Момент импульса относительно неподвижной оси вращения.
- •15.Момент инерции тела относительно оси.
- •17.Кинетическая энергия вращающегося тела.
- •18.Закон сохранения момента импульса.
- •19.Гармонические механические колебания и их кинематические характеристики.
- •20.Пружинный, физический и математический маятники.
- •21.Сложение гармонических колебаний одного направления и одинаковой частоты.
- •27.Внутренняя энергия идеального газа.
- •28 Работа газа при изменении его объема
- •29 Количество теплоты. Теплоемкость
- •30 Первое начало термодинамики и его применение к изопроцессам
- •31 Адиобатный процесс
- •32 Среднее число столкновений и средняя длина свободы пробега молекул
- •33 Опытные законы диффузии теплопроводности трения
- •34 Круговые процессы Обратимые и необратимые процессы
- •35 Тепловые и холодильные маширы
- •36 Цикл карно и его кпд
- •37 Второе начало термодинамики
- •38 Поверхности натяжения. Капиллярные явления
37 Второе начало термодинамики
Периодически действующее устройство, основанное на первом законе термодинамики, которое совершает работу за счёт охлаждения одного источника теплоты, называется вечным двигателем второго рода.
Называется полученное опытным путём утверждение о невозможности построения вечного двигателя второго рода, существуют две формулировки:
1) невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу;
2) невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого к телу более нагретому;
Энтропия. Энтропия идеального газа:
.
Однозначная функция состояния S,
полный дифференциал которой определяется
последней формулой, называется энтропией
тела. По характеру изменения энтропии
можно судить о том, в каком направлении
происходит теплообмен. При нагревании
тела
>
0) его энтропия возрастает
,
если тело охлаждается, то наоборот.
Полный дифференциал энтропии идеального газа:
,
где М-масса газа,
-
его молярная масса,
-
молярная теплоёмкость газа при постоянном
объёме, R-
универсальная газовая постоянная, T-
температура газа, V
– его объём
38 Поверхности натяжения. Капиллярные явления
Капиллярные явления - физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 — p2 = 2s12/r, где (s12 — поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе) 2. В случае вогнутой поверхности жидкости (r < 0) давление в ней понижено по сравнению с давлением в соседней фазе: p1 < p2 и Dp < 0. Для выпуклых поверхностей (r > 0) знак Dp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела (r = ¥) такая составляющая отсутствует и Dp = 0.
Высота поднятия жидкости в капиллярной трубке hопределяется уравновешиванием лапласовского и гидростатичесого давлений: Свойство поверхности жидкости сокращаться можно истолковать как существование сил, стремящихся сократить эту поверхность. Молекула M1 (рис. 2), расположенная на поверхности жидкости, взаимодействует не только с молекулами, находящимися внутри жидкости, но и с молекулами, находящимися на поверхности жидкости, расположенными в пределах сферы молекулярного действия.