Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
N_remeni_naslazhdenia_33__33.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.18 Mб
Скачать

2.1.2. Структура стандартов ieee 802.X

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Стандарты IEEE 802 имеют достаточно четкую структуру, приведенную на рис. 2.1:

Рис. 2.1. Структура стандартов IEEE 802.X

Эта структура появилась в результате большой работы, проведенной комитетом 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уровень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоколу уровня MAC соответствует несколько вариантов протоколов физического уровня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, таких как ArcNet, FDDI, l00VG-AnyLAN).

Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже технологии, стандартизованные не в рамках комитета 802, ориентируются на использование протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стандарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важными являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стандартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802. ID, описывающий логику работы моста/коммутатора, стандарт 802.1Н, определяющий работу транслирующего моста, который может без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжает расти. Например, недавно он пополнился важным стандартом 802.1Q, определяющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов.

Стандарты 802.3,802.4,802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился | как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM.

Исходные фирменные технологии и их модифицированные варианты - стандарты 802.х в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регулярно вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составляет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного развития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта носил открытый характер.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

  • 802.1 - Internetworking - объединение сетей;

  • 802.2 - Logical Link Control, LLC - управление логической передачей данных;

  • 802.3 - Ethernet с методом доступа CSMA/CD;

  • 802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

  • 802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

  • 802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

  • 802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

  • 802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

  • 802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

  • 802.10 - Network Security - сетевая безопасность;

  • 802.11 - Wireless Networks - беспроводные сети;

  • 802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.

  1. Компоненты вычислительных сетей. Аппаратное обеспечение.

Компьютерная сеть состоит из трех основных аппаратных компонент и двух программных, которые должны работать согласованно. Для корректной работы устройств в сети их нужно правильно инсталлировать и установить рабочие параметры.

Основные компоненты

Основными аппаратными компонентами сети являются следующие:

  1. Абонентские системы: компьютеры (рабочие станции или клиенты и серверы); принтеры; сканеры и др.

  2. Сетевое оборудование: сетевые адаптеры; концентраторы (хабы); мосты; маршрутизаторы и др.

  3. Коммуникационные каналы: кабели; разъемы; устройства передачи и приема данных в беспроводных технологиях.

Основными программными компонентами сети являются следующие:

  1. Сетевые операционные системы, где наиболее известные из них это: Windows NT; Windows for Workgroups; LANtastic; NetWare; Unix; Linux и т.д.

  2. Сетевое программное обеспечение (Сетевые службы): клиент сети; сетевая карта; протокол; служба удаленного доступа.

ЛВС (Локальная вычислительная сеть) – это совокупность компьютеров, каналов связи, сетевых адаптеров, работающих под управлением сетевой операционной системы и сетевого программного обеспечения.

В ЛВС каждый ПК называется рабочей станцией, за исключением одного или нескольких компьютеров, которые предназначены для выполнения функций файл-серверов. Каждая рабочая станция и файл-сервер имеют сетевые карты (адаптеры), которые посредством физических каналов соединяются между собой. В дополнение к локальной операционной системе на каждой рабочей станции активизируется сетевое программное обеспечение, позволяющее станции взаимодействовать с файловым сервером.

Компьютеры, входящие в ЛВС клиент – серверной архитектуры, делятся на два типа: рабочие станции, или клиенты, предназначенные для пользователей, и файловые серверы, которые, как правило, недоступны для обычных пользователей и предназначены для управления ресурсами сети.

Аналогично на файловом сервере запускается сетевое программное обеспечение, которое позволяет ему взаимодействовать с рабочей станцией и обеспечить доступ к своим файлам.

  1. Планирование и разработка сетей. Выбор сетевой архитектуры.

Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.

В данном курсе будет рассмотрено три вида архитектур:

архитектура терминал – главный компьютер;

одноранговая архитектура;

архитектура клиент – сервер.

Архитектура терминал – главный компьютер

Архитектура терминал – главный компьютер (terminal – host computer architecture) – это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.

Рассматриваемая архитектура предполагает два типа оборудования:

Главный компьютер, где осуществляется управление сетью, хранение и обработка данных.

Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

Главный компьютер через мультиплексоры передачи данных (МПД) взаимодействуют с терминалами.

Классический пример архитектуры сети с главными компьютерами – системная сетевая архитектура (System Network Architecture – SNA).

Одноранговая архитектура

Одноранговая архитектура (peer-to-peer architecture) – это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.

К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.

Одноранговые ЛВС являются наиболее легким и дешевым типом сетей для установки. Они на компьютере требуют, кроме сетевой карты и сетевого носителя, только операционной системы Windows 95 или Windows for Workgroups. При соединении компьютеров, пользователи могут предоставлять ресурсы и информацию в совместное пользование.

Одноранговые сети имеют следующие преимущества:

они легки в установке и настройке;

отдельные ПК не зависят от выделенного сервера;

пользователи в состоянии контролировать свои ресурсы;

малая стоимость и легкая эксплуатация;

минимум оборудования и программного обеспечения;

нет необходимости в администраторе;

хорошо подходят для сетей с количеством пользователей, не превышающим десяти.

Проблемой одноранговой архитектуры является ситуация, когда компьютеры отключаются от сети. В этих случаях из сети исчезают виды сервиса, которые они предоставляли. Сетевую безопасность одновременно можно применить только к одному ресурсу, и пользователь должен помнить столько паролей, сколько сетевых ресурсов. При получении доступа к разделяемому ресурсу ощущается падение производительности компьютера. Существенным недостатком одноранговых сетей является отсутствие централизованного администрирования.

Использование одноранговой архитектуры не исключает применения в той же сети также архитектуры «терминал – главный компьютер» или архитектуры «клиент – сервер».

Архитектура клиент – сервер

Архитектура клиент – сервер (client-server architecture) – это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов. Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты.

Сервер - это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис – это процесс обслуживания клиентов.

Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

Сервисная функция в архитектуре клиент – сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом. Им может быть программа или пользователь. На рис. 1.6 приведен перечень сервисов в архитектуре клиент – сервер.

Клиенты – это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя. Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью.

Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система. Этот ПК становится сервером. Программное обеспечение (ПО), установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:

NetWare фирмы Novel;

Windows NT фирмы Microsoft;

UNIX фирмы AT&T;

Linux.

Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.

Сети на базе серверов имеют лучшие характеристики и повышенную надежность. Сервер владеет главными ресурсами сети, к которым обращаются остальные рабочие станции.

В современной клиент – серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.

Сети клиент – серверной архитектуры имеют следующие преимущества:

позволяют организовывать сети с большим количеством рабочих станций;

обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;

эффективный доступ к сетевым ресурсам;

пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.

Наряду с преимуществами сети клиент – серверной архитектуры имеют и ряд недостатков:

неисправность сервера может сделать сеть неработоспособной, как минимум потерю сетевых ресурсов;

требуют квалифицированного персонала для администрирования;

имеют более высокую стоимость сетей и сетевого оборудования.

Выбор архитектуры сети

Выбор архитектуры сети зависит от назначения сети, количества рабочих станций и от выполняемых на ней действий.

Следует выбрать одноранговую сеть, если:

количество пользователей не превышает десяти;

все машины находятся близко друг от друга;

имеют место небольшие финансовые возможности;

нет необходимости в специализированном сервере, таком как сервер БД, факс-сервер или какой-либо другой;

нет возможности или необходимости в централизованном администрировании.

Следует выбрать клиент серверную сеть, если:

количество пользователей превышает десяти;

требуется централизованное управление, безопасность, управление ресурсами или резервное копирование;

необходим специализированный сервер;

нужен доступ к глобальной сети;

требуется разделять ресурсы на уровне пользователей.

  1. Сетевые службы, виды и назначение.

Сетевое программное обеспечение (Сетевые службы):

клиент сети;

сетевая карта;

протокол;

служба удаленного доступа.

Клиент для сетей обеспечивает связь с другими компьютерами и серверами, а также доступ к файлам и принтерам.

Сетевая карта является устройством, физически соединяющим компьютер с сетью. Для каждой сетевой карты устанавливаются свои драйверы, значение IRQ (требования к прерыванию) и адреса ввода/вывода.

Протоколы используются для установления правил обмена информацией в сетях.

Служба удаленного доступа позволяет делать файлы и принтеры доступными для компьютеров в сети.

Применение многопользовательских версий прикладных программ резко увеличивают производительность. Многие системы управления базами данных позволяют нескольким рабочим станциям работать с общей базой данных. Большинство деловых прикладных программ также являются многопользовательскими.

  1. Общая характеристика протоколов локальных сетей.

При организации взаимодействия узлов в локальных сетях основная роль отводится протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне определенной, так, например, наиболее популярный протокол канального уровня - Ethernet - рассчитан на параллельное подключение всех узлов сети к общей для них шине - отрезку коаксиального кабеля или иерархической древовидной структуре сегментов, образованных повторителями. Протокол Token Ring также рассчитан на вполне определенную конфигурацию - соединение компьютеров в виде логического кольца.

Подобный подход, заключающийся в использовании простых структур кабельных соединений между компьютерами локальной сети, соответствовал основной цели, которую ставили перед собой разработчики первых локальных сетей во второй половине 70-х годов. Эта цель заключалась в нахождении простого и дешевого решения для объединения в вычислительную сеть нескольких десятков компьютеров, находящихся в пределах одного здания. Решение должно было быть недорогим, поскольку в сеть объединялись недорогие компьютеры. Количество их в одной организации было небольшим, поэтому предел в несколько десятков (максимум - до сотни) компьютеров представлялся вполне достаточным для роста практически любой локальной сети.

Для упрощения и, соответственно, удешевления аппаратных и программных решений разработчики первых локальных сетей остановились на совместном использовании кабелей всеми компьютерами сети в режиме разделения времени, то есть режиме TDM. Наиболее явным образом режим совместного использования кабеля проявляется в классических сетях Ethernet, где коаксиальный кабель физически представляет собой неделимый отрезок кабеля, общий для всех узлов сети. Но и в сетях Token Ring и FDDI, где каждая соседняя пара компьютеров соединена, казалось бы, своими индивидуальными отрезками кабеля с концентратором, эти отрезки не могут использоваться компьютерами, которые непосредственно к ним подключены, в произвольный момент времени. Эти отрезки образуют логическое кольцо, доступ к которому как к единому целому может быть получен только по вполне определенному алгоритму, в котором участвуют все компьютеры сети. Использование кольца как общего разделяемого ресурса упрощает алгоритмы передачи по нему кадров, так как в каждый конкретный момент времени кольцо занято только одним компьютером.

Использование разделяемых сред (shared media) позволяет упростить логику работы сети. Например, отпадает необходимость контроля переполнения узлов сети кадрами от многих станций, решивших одновременно обменяться информацией. В глобальных сетях, где отрезки кабелей, соединяющих отдельные узлы, не рассматриваются как общий ресурс, такая необходимость возникает, и для решения этой проблемы в протоколы обмена информацией вводятся весьма сложные процедуры управления потоком кадров, предотвращающие переполнение каналов связи и узлов сети.

Использование в локальных сетях очень простых конфигураций (общая шина и кольцо) наряду с положительными имело и отрицательные последствия, из которых наиболее неприятными были ограничения по производительности и надежности. Наличие только одного пути передачи информации, разделяемого всеми узлами сети, в принципе ограничивало пропускную способность сети пропускной способностью этого пути (которая делилась в среднем на число компьютеров сети), а надежность сети - надежностью этого пути. Поэтому по мере повышения популярности локальных сетей и расширения их сфер применения все больше стали применяться специальные коммуникационные устройства - мосты и маршрутизаторы, - которые в значительной мере снимали ограничения единственной разделяемой среды передачи данных. Базовые конфигурации в форме общей шины и кольца превратились в элементарные структуры локальных сетей, которые можно теперь соединять друг с другом более сложным образом, образуя параллельные основные или резервные пути между узлами.

Тем не менее внутри базовых структур по-прежнему работают все те же протоколы разделяемых единственных сред передачи данных, которые были разработаны более 15 лет назад. Это связано с тем, что хорошие скоростные и надежностные характеристики кабелей локальных сетей удовлетворяли в течение всех этих лет пользователей небольших компьютерных сетей, которые могли построить сеть без больших затрат только с помощью сетевых адаптеров и кабеля. К тому же колоссальная инсталляционная база оборудования и программного обеспечения для технологий Ethernet и Token Ring способствовала тому, что сложился следующий подход: в пределах небольших сегментов используются старые протоколы в их неизменном виде, а объединение таких сегментов в общую сеть происходит с помощью дополнительного и достаточно сложного оборудования.

В последние несколько лет наметилось движение к отказу от разделяемых сред передачи данных в локальных сетях и переходу к применению активных коммутаторов, к которым конечные узлы присоединяются индивидуальными линиями связи. В чистом виде такой подход предлагается в технологии АТМ (Asynchronous Transfer Mode), а в технологиях, носящих традиционные названия с приставкой switched (коммутируемый): switched Ethernet, switched Token Ring, switched FDDI, обычно используется смешанный подход, сочетающий разделяемые и индивидуальные среды передачи данных. Чаще всего конечные узлы соединяются в небольшие разделяемые сегменты с помощью повторителей, а сегменты соединяются друг с другом с помощью индивидуальных коммутируемых связей.

Существует и достаточно заметная тенденция к использованию в традиционных технологиях так называемой микросегментации, когда даже конечные узлы сразу соединяются с коммутатором индивидуальными каналами. Такие сети получаются дороже разделяемых или смешанных, но производительность их выше.

При использовании коммутаторов у традиционных технологий появился новый режим работы - полнодуплексный (full-duplex). В разделяемом сегменте станции всегда работают в полудуплексном режиме (half-duplex), так как в каждый момент времени сетевой адаптер станции либо передает свои данные, либо принимает чужие, но никогда не делает это одновременно. Это справедливо для всех технологий локальных сетей, так как разделяемые среды поддерживаются не только классическими технологиями локальных сетей Ethernet, Token Ring, FDDI, но и всеми новыми - Fast Ethernet, 100VG-AnyLAN, Gigabit Ethernet.

В полнодуплексном режиме сетевой адаптер может одновременно передавать свои данные в сеть и принимать из сети чужие данные. Такой режим несложно обеспечивается при прямом соединение с мостом/коммутатором или маршрутизатором, так как вход и выход каждого порта такого устройства работают независимо друг от друга, каждый со своим буфером кадров.

Сегодня каждая технология локальных сетей приспособлена для работы как в полудуплексном, так и полнодуплексном режимах. В этих режимах ограничения, накладываемые на общую длину сети, существенно отличаются, так что одна и та же технология может позволять строить весьма различные сети в зависимости от выбранного режима работы (который зависит от того, какие устройства используются для соединения узлов - повторители или коммутаторы). Например, технология Fast Ethernet позволяет для полудуплексного режима строить сети диаметром не более 200 метров, а для полнодуплексного режима ограничений на диаметр сети не существует. Поэтому при сравнении различных технологий необходимо обязательно принимать во внимание возможность их работы в двух режимах.

Несмотря на появление новых технологий, классические протоколы локальных сетей Ethernet и Token Ring по прогнозам специалистов будут повсеместно использоваться еще по крайней мере лет 5-10, в связи с чем знание их деталей необходимо для успешного применения современной коммуникационной аппаратуры. Кроме того, некоторые современные высокопроизводительные технологии, такие как Fast Ethernet, Gigabit Ethernet, в значительной степени сохраняют преемственность со своими предшественниками. Это еще раз подтверждает важность изучения классических протоколов локальных сетей, естественно, наряду с изучением новых технологий.

  1. Структура стандартов IEEE 802.X

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Помимо IEEE в работе по стандартизации протоколов локальных сетей принимали участие и другие организации. Так, для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ЕСМА, которой приняты стандарты ЕСМА-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ЕСМА-89,90 по методу передачи маркера.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень (Data Link Layer) делится в локальных сетях на два подуровня:

  • логической передачи данных (Logical Link Control, LLC);

  • управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Стандарты IEEE 802 имеют достаточно четкую структуру, приведенную на (рис. 3.1)

Эта структура появилась в результате большой работы, проведенной комитетом 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уровень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоколу уровня MAC соответствует несколько вариантов протоколов физического уровня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, таких как ArcNet, FDDI, l00VG-AnyLAN).

Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже технологии, стандартизованные не в рамках комитета 802, ориентируются на использование протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стандарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важными являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стандартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802. ID, описывающий логику работы моста/коммутатора, стандарт 802.1Н, определяющий работу транслирующего моста, который может без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжает расти. Например, недавно он пополнился важным стандартом 802.1Q, определяющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов.

Стандарты 802.3,802.4,802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился | как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM.

Исходные фирменные технологии и их модифицированные варианты - стандарты 802.х в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регулярно вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составляет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного развития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта носил открытый характер.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

  • 802.1 - Internetworking - объединение сетей;

  • 802.2 - Logical Link Control, LLC - управление логической передачей данных;

  • 802.3 - Ethernet с методом доступа CSMA/CD;

  • 802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

  • 802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

  • 802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

  • 802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

  • 802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

  • 802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

  • 802.10 - Network Security - сетевая безопасность;

  • 802.11 - Wireless Networks - беспроводные сети;

  • 802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.

  1. Технология Ethernet 802.3. Методы доступа CSMA/CD и CSMA/CA .

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались различные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX или Ethernet II.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень, В Ethernet DIX определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают. Часто для того, чтобы отличить Ethernet, определенный стандартом IEEE, и фирменный Ethernet DIX, первый называют технологией 802.3, а за фирменным оставляют название Ethernet без дополнительных обозначений.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации -

  • 10Base-5,

  • 10Base-2,

  • 10Base-T,

  • 10Base-FL,

  • 10Base-FB

В 1995 году был принят стандарт Fast Ethernet, который во многом не является самостоятельным стандартом, о чем говорит и тот факт, что его описание просто является дополнительным разделом к основному стандарту 802,3 - разделом 802.3ч. Аналогично, принятый в 1998 году стандарт Gigabit Ethernet описан в разделе 802.3z основного документа.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код.

Все виды стандартов Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используют один и тот же метод разделения среды передачи данных – методы CSMA/CD, CSMA/CА.

Метод множественного доступа с прослушиванием несущей и разрешением коллизий (CSMA/CD) имеет следующий алгоритм предоставления доступа в сеть: если рабочей станции надо воспользоваться ЛВС для передачи данных происходит проверка канала связи. Если канал свободен, станция начинает передачу данных, продолжая прослушивать сеть для выявления возможных коллизии. Коллизия может возникнуть, если два узла одновременно занять канал связи. При обнаружении коллизии передающая рабочая станция должна прервать передачу данных и ожидать освобождения канала связи.

Алгоритм множественного доступа с контролем несущей и избежанием коллизии отличается от предыдущего тем, что пытается избежать конфликтов. Рабочая станция перед отправкой данных проверяет канал связи. Если канал связи свободен, то станция ждет интервал безопасности от конфликта. Если не возникает передача данных от другого узла, то станция ждет случайное время и захватывает канал связи. Это предотвращает возможность передачи данных, поскольку, если в этот момент две станции проверят канал связи на свободность, то случайное время начала передачи позволяет им разнести передачи по времени. Далее процесс идет согласно обычному алгоритму. Если приемник получает подтверждение в течение заданного времени, то передача прошла успешно. Если подтверждение не получено, станция увеличивает свой параметр задержки и время интервала безопасности.

  1. Форматы кадров технологии Ethernet. Спецификация физической среды Ethernet

Форматы кадров технологии Ethernet

Стандарт на технологию Ethernet, описанный в документе 802.3, дает описание единственного формата кадра МАС-уровня. Так как в кадр МАС-уровня должен вкладываться кадр уровня LLC, описанный в документе 802.2, то по стандартам IEEE в сети Ethernet может использоваться только единственный вариант кадра канального уровня, образованный комбинацией заголовков МАС и LLC подуровней. Тем не менее, на практике в сетях Ethernet на канальном уровне используются заголовки 4-х типов. Это связано с длительной историей развития технологии Ethernet до принятия стандартов IEEE 802, когда подуровень LLC не выделялся из общего протокола и, соответственно, заголовок LLC не применялся. Затем, после принятия стандартов IEEE и появления двух несовместимых форматов кадров канального уровня, была сделана попытка приведения этих форматов к некоторому общему знаменателю, что привело еще к одному варианту кадра. 

Различия в форматах кадров могут иногда приводить к несовместимости аппаратуры, рассчитанной на работу только с одним стандартом, хотя большинство сетевых адаптеров, мостов и маршрутизаторов умеет работать со всеми используемыми на практике форматами кадров технологии Ethernet. 

Ниже приводится описание всех четырех модификаций заголовков кадров Ethernet (причем под заголовком кадра понимается весь набор полей, которые относятся к канальному уровню): 

Кадр 802.3/LLC (или кадр Novell 802.2) 

Кадр Raw 802.3 (или кадр Novell 802.3) 

Кадр Ethernet DIX (или кадр Ethernet II) 

Кадр Ethernet SNAP 

Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах 802.3 и 802.2. 

Стандарт 802.3 определяет восемь полей заголовка: 

Поле преамбулы состоит из семи байтов синхронизирующих данных. Каждый байт содержит одну и ту же последовательность битов - 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом. Преамбула используется для того, чтобы дать время и возможность схемам приемопередатчиков (transceiver) прийти в устойчивый синхронизм с принимаемыми тактовыми сигналами. 

Начальный ограничитель кадра состоит из одного байта с набором битов 10101011. Появление этой комбинации является указанием на предстоящий прием кадра. 

Адрес получателя - может быть длиной 2 или 6 байтов (MAC-адрес получателя). Первый бит адреса получателя - это признак того, является адрес индивидуальным или групповым: если 0, то адрес указывает на определенную станцию, если 1, то это групповой адрес нескольких (возможно всех) станций сети. При широковещательной адресации все биты поля адреса устанавливаются в 1. Общепринятым является использование 6-байтовых адресов. 

Адрес отправителя - 2-х или 6-ти байтовое поле, содержащее адрес станции отправителя. Первый бит - всегда имеет значение 0. 

Двухбайтовое поле длины определяет длину поля данных в кадре. 

Поле данных может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, чтобы дополнить кадр до минимально допустимой длины. 

Поле заполнения состоит из такого количества байтов заполнителей, которое обеспечивает определенную минимальную длину поля данных (46 байт). Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется. 

Поле контрольной суммы - 4 байта, содержащие значение, которое вычисляется по определенному алгоритму (полиному CRC-32). После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр. 

Кадр 802.3 является кадром MAС-подуровня, в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра. Формат кадра LLC был описан выше. 

Результирующий кадр 802.3/LLC изображен в левой части рисунка 4. Так как кадр LLC имеет заголовок длиной 3 байта, то максимальный размер поля данных уменьшается до 1497 байт. 

Рис. 4. Форматы кадров Ethernet 

Кадр стандарта Ethernet DIX, называемый также кадром Ethernet II, похож на кадр Raw 802.3 тем, что он также не использует заголовки подуровня LLC, но отличается тем, что на месте поля длины в нем определено поле типа протокола (поле Type). Это поле предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра. Для кодирования типа протокола используются значения, превышающие значение максимальной длины поля данных, равное 1500, поэтому кадры Ethernet II и 802.3 легко различимы. 

Еще одним популярным форматом кадра является кадр Ethernet SNAP (SNAP - SubNetwork Access Protocol, протокол доступа к подсетям). Кадр Ethernet SNAP определен в стандарте 802.2H и представляет собой расширение кадра 802.3 путем введения дополнительного поля идентификатора организации, которое может использоваться для ограничения доступа к сети компьютеров других организаций. 

Спецификации физической среды Ethernet

Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0.5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных в качестве общей шины. Метод доступа CSMA/CD и все временные параметры Ethernet остаются одними и теми же для любой спецификации физической среды. 

Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных: 

10Base-5 - коаксиальный кабель диаметром 0.5 дюйма, называемый "толстым" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей). 

10Base-2 - коаксиальный кабель диаметром 0.25 дюйма, называемый "тонким" коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей). 

10Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию с концентратором. Расстояние между концентратором и конечным узлом - не более 100 м. 

10Base-F - оптоволоконный кабель. Топология аналогична стандарту на витой паре. Имеется несколько вариантов этой спецификации - FOIRL, 10Base-FL, 10Base-FB. 

Число 10 обозначает битовую скорость передачи данных этих стандартов - 10 Мб/с, а слово Base - метод передачи на одной базовой частоте 10 МГц (в отличие от стандартов, использующих несколько несущих частот, которые называются broadband - широкополосными). 

Стандарт 10Base-5

Стандарт 1OBase-5 в основном соответствует экспериментальной сети Ethernet фирмы Xerox и может считаться классическим Ethernet. Он использует в качестве среды передачи данных коаксиальный кабель с волновым сопротивлением 50 Ом, диаметром центрального медного провода 2,17 мм и внешним диаметром около 10 мм («толстый» Ethernet).

Кабель используется как моноканал для всех станций. Сегмент кабеля имеет максимальную длину 500 м (без повторителей) и должен иметь на концах согласующие терминаторы сопротивлением 50 Ом, поглощающие распространяющиеся по кабелю сигналы и препятствующие возникновению отраженных сигналов. При отсутствии терминаторов («заглушек») в кабеле возникают стоячие волны, так что одни узлы получают мощные сигналы, а другие - настолько слабые, что их прием становится невозможным.

Станция должна подключаться к кабелю при помощи приемопередатчика - трансивера (transmitter+Teceiver = transceiver). Трансивер устанавливается непосредственно на кабеле и питается от сетевого адаптера компьютера. Трансивер может подсоединяться к кабелю как методом прокалывания, обеспечивающим непосредственный физический контакт, так и бесконтактным методом.

Трансивер соединяется с сетевым адаптером интерфейсным кабелем А VI (Attachment Unit Interface) длиной до 50 м, состоящим из 4 витых пар (адаптер должен иметь разъем AUI). Наличие стандартного интерфейса между трансивером и остальной частью сетевого адаптера очень полезно при переходе с одного типа кабеля на другой. Для этого достаточно только заменить Трансивер, а остальная часть сетевого адаптера остается неизменной, так как она отрабатывает протокол уровня MAC. При этом необходимо только, чтобы новый Трансивер (например, Трансивер для витой пары) поддерживал стандартный интерфейс AUI. Для присоединения к интерфейсу AUI используется разъем DB-15.

Допускается подключение к одному сегменту не более 100 трансиверов, причем расстояние между подключениями трансиверов не должно быть меньше 2,5 м. На кабеле имеется разметка через каждые 2,5 м, которая обозначает точки подключения трансиверов. При подсоединении компьютеров в соответствии с разметкой влияние стоячих волн в кабеле на сетевые адаптеры сводится к минимуму.

Трансивер - это часть сетевого адаптера, которая выполняет следующие функции:

  • прием и передача данных с кабеля на кабель;

  • определение коллизий на кабеле;

  • электрическая развязка между кабелем и остальной частью адаптера;

  • защита кабеля от некорректной работы адаптера.

Последнюю функцию иногда называют «контролем болтливости», что является буквальным переводом соответствующего английского термина (jabber control). При возникновении неисправностей в адаптере может возникнуть ситуация, когда на кабель будет непрерывно выдаваться последовательность случайных сигналов. Так как кабель - это общая среда для всех станций, то работа сети будет заблокирована одним неисправным адаптером. Чтобы этого не случилось, на выходе передатчика ставится схема, которая проверяет время передачи кадра. Если максимально возможное время передачи пакета превышается (с некоторым запасом), то эта схема просто отсоединяет выход передатчика от кабеля. Максимальное время передачи кадра (вместе с преамбулой) равно 1221 мкс, а время jabber- контроля устанавливается равным 4000 мкс (4 мс).

Упрощенная структурная схема трансивера показана на (рис. 3.4.) Передатчик и приемник присоединяются к одной точке кабеля с помощью специальной схемы, например трансформаторной, позволяющей организовать одновременную передачу и прием сигналов с кабеля.

Детектор коллизий определяет наличие коллизии в коаксиальном кабеле по повышенному уровню постоянной составляющей сигналов. Если постоянная составляющая превышает определенный порог (около 1,5 В), значит, на кабель работает более одного передатчика. Развязывающие элементы (РЭ) обеспечивают гальваническую развязку трансивера от остальной части сетевого адаптера и тем самым защищают адаптер и компьютер от значительных перепадов напряжения, возникающих на кабеле при его повреждении.

Стандарт 10Base-5 определяет возможность использования в сети специального устройства - повторителя (repeator). Повторитель служит для объединения в одну сеть нескольких сегментов кабеля и увеличения тем самым общей длины сети. Повторитель принимает сигналы из одного сегмента кабеля и побитно синхронно повторяет их в другом сегменте, улучшая форму и мощность импульсов, а также синхронизируя импульсы. Повторитель состоит из двух (или нескольких) трансиверов, которые присоединяются к сегментам кабеля, а также блока повторения со своим тактовым генератором. Для лучшей синхроннизации передаваемых бит повторитель задерживает передачу нескольких первых бит преамбулы кадра, за счет чего увеличивается задержка передачи кадра с сегмента на сегмент, а также несколько уменьшается межкадровый интервал IPG.

Стандарт разрешает использование в сети не более 4 повторителей и, соответственно, не более 5 сегментов кабеля. При максимальной длине сегмента кабеля в 500 м это дает максимальную длину сети l0Base-5 в 2500 м. Только 3 сегмента из 5 могут быть нагруженными, то есть такими, к которым подключаются конечные узлы. Между нагруженными сегментами должны быть ненагруженные сегменты, так что максимальная конфигурация сети представляет собой два нагруженных крайних сегмента, которые соединяются ненагруженными сегментами еще с одним центральным нагруженным сегментом. На рис. 3.3 был приведен пример сети Ethernet, состоящей из трех сегментов, объединенных двумя повторителями. Крайние сегменты являются нагруженными, а промежуточный - ненагруженным.

Правило применения повторителей в сети Ethernet l0Base-5 носит название «правило 5-4-Зу. 5 сегментов, 4 повторителя, 3 нагруженных сегмента. Ограниченное число повторителей объясняется дополнительными задержками распространения сигнала, которые они вносят. Применение повторителей увеличивает время двойного распространения сигнала, которое для надежного распознавания коллизий не должно превышать время передачи кадра минимальной длины, то есть кадра в 72 байт или 576 бит.

Каждый повторитель подключается к сегменту одним своим трансивером, поэтому к нагруженным сегментам можно подключить не более 99 узлов. Максимальное число конечных узлов в сети 10Base-5 таким образом составляет 99*3 = 297 узлов.

К достоинствам стандарта 10Base-5 относятся:

  • хорошая защищенность кабеля от внешних воздействий;

  • сравнительно большое расстояние между узлами;

  • возможность простого перемещения рабочей станции в пределах длины кабеля AUI. ¶Недостатками 10Base-5 являются:

  • высокая стоимость кабеля;

  • сложность его прокладки из-за большой жесткости;

  • потребность в специальном инструменте для заделки кабеля;

  • остановка работы всей сети при повреждении кабеля или плохом соединении;

  • необходимость заранее предусмотреть подводку кабеля ко всем возможным местам установки компьютеров.

Стандарт 10Base-2

Стандарт 10Base-2 использует в качестве передающей среды коаксиальный кабель с диаметром центрального медного провода 0,89 мм и внешним диаметром около 5 мм («тонкий» Ethernet). Кабель имеет волновое сопротивление 50 Ом. Такими характеристиками обладают кабели марок RG-58 /U, RG-58 A/U, RG-58 C/U.

Максимальная длина сегмента без повторителей составляет 185 м, сегмент должен иметь на концах согласующие терминаторы 50 Ом. Тонкий коаксиальный кабель дешевле толстого, из-за чего сети l0Base-2 иногда называют сетями Cheapemet (от cheaper - более дешевый). Но за дешевизну кабеля приходится расплачиваться качеством - «тонкий» коаксиал обладает худшей помехозащищенностью, худшей механической прочностью и более узкой полосой пропускания.

Станции подключаются к кабелю с помощью высокочастотного BNC Т-коннектора, который представляет собой тройник, один отвод которого соединяется с сетевым адаптером, а два других - с двумя концами разрыва кабеля. Максимальное количество станций, подключаемых к одному сегменту, - 30. Минимальное расстояние между станциями -1м. Кабель «тонкого» коаксиала имеет разметку для подключения узлов с шагом в 1 м.

Стандарт l0Base-2 также предусматривает использование повторителей, применение которых также должно соответствовать «правилу 5-4-3». В этом случае сеть будет иметь максимальную длину в 5х185 = 925 м. Очевидно, что это ограничение является более сильным, чем общее ограничение в 2500 метров.

ВНИМАНИЕ Для построения корректной сети Ethernet нужно соблюсти много ограничений, причем некоторые из них относятся к одним и тем же параметрам сети - например, максимальная длина или максимальное количество компьютеров в сети должны удовлетворять одновременно нескольким разным условиям. Корректная сеть Ethernet должна соответствовать всем требованиям, но на практике нужно удовлетворить только наиболее жесткие. Так, если в сети Ethernet-не должно быть более 1024 узлов, а стандарт 10Base-2 ограничивает число нагруженных сегментов тремя, то общее количество узлов в сети lOBase-2 не должно превышать 29*3 = 87. Менее жесткое ограничение в 1024 конечных узла в сети 10Base-2 никогда не достигается.

Стандарт 10Base-2 очень близок к стандарту 10Base-5. Но трансиверы в нем объединены с сетевыми адаптерами за счет того, что более гибкий тонкий коаксиальный кабель может быть подведен непосредственно к выходному разъему платы сетевого адаптера, установленной в шасси компьютера. Кабель в данном случае «висит» на сетевом адаптере, что затрудняет физическое перемещение компьютеров.

Типичный состав сети стандарта 10Base-2, состоящей из одного сегмента кабеля, показан на (рис. 3.5.)

Реализация этого стандарта на практике приводит к наиболее простому решению для кабельной сети, так как для соединения компьютеров требуются только сетевые адаптеры, Т-коннекторы и терминаторы 50 Ом. Однако этот вид кабельных соединений наиболее сильно подвержен авариям и сбоям: кабель более восприимчив к помехам, чем «толстый» коаксиал, в моноканале имеется большое количество механических соединений (каждый Т-коннектор дает три механических соединения, два из которых имеют жизненно важное значение для всей сети), пользователи имеют доступ к разъемам и могут нарушить целостность моноканала. Кроме того, эстетика и эргономичность этого решения оставляют желать лучшего, так как от каждой станции через Т-коннектор отходят два довольно заметных провода, которые под столом часто образуют моток кабеля - запас, необходимый на случай даже небольшого перемещения рабочего места.

Общим недостатком стандартов 10Base-5 и 10Base-2 является отсутствие оперативной информации о состоянии моноканала. Повреждение кабеля обнаруживается сразу же (сеть перестает работать), но для поиска отказавшего отрезка кабеля необходим специальный прибор - кабельный тестер.

Стандарт 10Bаse-T

Стандарт принят в 1991 году, как дополнение к существующему набору стандартов Ethernet, и имеет обозначение 802.3L

Сети 10Base-T используют в качестве среды две неэкранированные витые пары (Unshielded Twisted Pair, UTP). Многопарный кабель на основе неэкранированной витой пары категории 3 (категория определяет полосу пропускания кабеля, величину перекрестных наводок NEXT и некоторые другие параметры его качества) телефонные компании уже достаточно давно использовали для подключения телефонных аппаратов внутри зданий. Этот кабель носит также название Voice Grade, говорящее о том, что он предназначен для передачи голоса.

Идея приспособить этот популярный вид кабеля для построения локальных сетей оказалась очень плодотворной, так как многие здания уже были оснащены нужной кабельной системой. Оставалось разработать способ подключения сетевых адаптеров и прочего коммуникационного оборудования к витой паре таким образом, чтобы изменения в сетевых адаптерах и программном обеспечении сетевых операционных систем были бы минимальными по сравнению с сетями Ethernet на коаксиале. Это удалось, поэтому переход на витую пару требует только замены трансивера сетевого адаптера или порта маршрутизатора, а метод доступа и все протоколы канального уровня остались теми же, что и в сетях Ethernet на коаксиале.

Конечные узлы соединяются по топологии «точка-точка» со специальным устройством - многопортовым повторителем с помощью двух витых пар. Одна витая пара требуется для передачи данных от станции к повторителю (выход Тх сетевого адаптера), а другая - для передачи данных от повторителя к станции (вход Rх сетевого адаптера). На (рис. 3.6.) показан пример трехпортового повторителя. Повторитель принимает сигналы от одного из конечных узлов и синхронно передает их на все свои остальные порты, кроме того, с которого поступили сигналы.

Многопортовые повторители в данном случае обычно называются концентраторами (англоязычные термины - hub или concentrator). Концентратор осуществляет функции повторителя сигналов на всех отрезках витых пар, подключенных к его портам, так что образуется единая среда передачи данных - логический моноканал (логическая общая шина). Повторитель обнаруживает коллизию в сегменте в случае одновременной передачи сигналов по нескольким своим Rх -входам и посылает jam-последовательность на все свои Тх - выходы. Стандарт определяет битовую скорость передачи данных 10 Мбит/с и максимальное расстояние отрезка витой пары между двумя непосредственно связанными узлами (станциями и концентраторами) не более 100 м при наличии витой пары качества не ниже категории 3. Это расстояние определяется полосой пропускания витой пары - на длине 100 м она позволяет передавать данные со скоростью 10 Мбит/с при использовании манчестерского кода.

Концентраторы 10Base-T можно соединять друг с другом с помощью тех же портов, которые предназначены для подключения конечных узлов. При этом нужно позаботиться о том, чтобы передатчик и приемник одного порта были соединены соответственно с приемником и передатчиком другого порта.

Для обеспечения синхронизации станций при реализации процедур доступа CSMA/CD и надежного распознавания станциями коллизий в стандарте определено максимально число концентраторов между любыми двумя станциями сети, а именно 4. Это правило носит название «правила 4-х хабов» и оно заменяет «правило 5-4-3», применяемое к коаксиальным сетям. При создании сети 10Base-T с большим числом станций концентраторы можно соединять друг с другом иерархическим способом, образуя древовидную структуру (рис.3.7.)

Общее количество станций в сети 10Base-T не должно превышать общего предела в 1024, и для данного типа физического уровня это количество действительно можно достичь. Для этого достаточно создать двухуровневую иерархию концентраторов, расположив на нижнем уровне достаточное количество концентраторов с общим количеством портов 1024 (рис. 3.8.) Конечные узлы нужно подключить к портам концентраторов нижнего уровня. Правило 4-х хабов при этом выполняется - между любыми конечными узлами будет ровно 3 концентратора.

Максимальная длина сети в 2500 м здесь понимается как максимальное расстояние между любыми двумя конечными узлами сети (часто применяется также термин «максимальный диаметр сети»). Очевидно, что если между любыми двумя узлами сети не должно быть больше 4-х повторителей, то максимальный диаметр сети 10Base-T составляет 5*100 = 500 м.

Сети, построенные на основе стандарта 10Base-T, обладают по сравнению с коаксиальными вариантами Ethernet многими преимуществами. Эти преимущества связаны с разделением общего физического кабеля на отдельные кабельные отрезки, подключенные к центральному коммуникационному устройству. И хотя логически эти отрезки по-прежнему образуют общую разделяемую среду, их физическое разделение позволяет контролировать их состояние и отключать в случае обрыва, короткого замыкания или неисправности сетевого адаптера на индивидуальной основе. Это обстоятельство существенно облегчает эксплуатацию больших сетей Ethernet, так как концентратор обычно автоматически выполняет такие функции, уведомляя при этом администратора сети о возникшей проблеме.

В стандарте 10Base-T определена процедура тестирования физической работоспособности двух отрезков витой пары, соединяющих трансивер конечного узла и порт повторителя. Эта процедура называется тестом связности (link test), и она основана на передаче каждые 16 мс специальных импульсов J и К манчестерского кода между передатчиком и приемником каждой витой пары. Если тест не проходит,, то порт блокируется и отключает проблемный узел от сети. Так как коды J и К являются запрещенными при передаче кадров, то тестовые последовательности не влияют на работу алгоритма доступа к среде.

Появление между конечными узлами активного устройства, которое может контролировать работу узлов и изолировать от сети некорректно работающие, является главным преимуществом технологии l0Base-T по сравнению со сложными в эксплуатации коаксиальными сетями. Благодаря концентраторам сеть Ethernet приобрела некоторые черты отказоустойчивой системы.

24. Методика расчёта конфигурации сетей Ethernet.

Модель, применяемая для оценки конфигурации Ethernet, основана на точном расчете временных характеристик выбранной конфигурации сети. Применение модели необходимо в том случае, когда размер проектируемой сети близок к максимально допустимому.

В модели используются две системы расчетов:

первая система предполагает вычисление двойного (кругового) времени прохождения сигнала по сети и сравнение его с максимально допустимой величиной;

вторая система проверяет допустимость величины получаемого межпакетного временного интервала, межпакетной щели (IPG – InterPacket Gap) в сети.

При этом вычисления в обеих системах расчетов ведутся для наихудшего случая, для пути максимальной длины, то есть для такого пути передаваемого по сети пакета, который требует для своего прохождения максимального времени.

При первой системе расчетов выделяются три типа сегментов:

начальный сегмент, соответствует началу пути максимальной длины ;

конечный сегмент расположен в конце пути максимальной длины ;

промежуточный сегмент входит в путь максимальной длины, но не является ни начальным, ни конечным.

Промежуточных сегментов в выбранном пути может быть несколько, а начальный и конечный сегменты при разных расчетах могут меняться местами друг с другом. Выделение этих трех типов сегментов позволяет автоматически учитывать задержки сигнала на всех концентраторах, входящих в путь максимальной длины, а также в приемопередающих узлах адаптеров.

Тип сегмента Ethernet

Макс. длина, м

Начальный сегмент

Промежуточный сегмент

Конечный сегмент

Задержка на метр длины

t0

tm

t0

tm

t0

tm

t1

10BASE5

500

11,8

55,0

46,5

89,8

169,5

212,8

0,087

10BASE2

185

11,8

30,8

46,5

65,5

169,5

188,5

0,103

10BASE-T

100

15,3

26,6

42,0

53,3

165,0

176,3

0,113

10BASE-FL

2000

12,3

212,3

33,5

233,5

156,5

356,5

0,100

FOIRL

1000

7,8

107,8

29,0

129,0

152,0

252,0

0,100

AUI

50

0

5,1

0

5,1

0

5,1

0,103

Методика расчета сводится к следующему:

В сети выделяется путь максимальной длины. Все дальнейшие расчеты ведутся для него. Если этот путь не очевиден, то рассчитываются все возможные пути, затем на основании этого выбирается путь максимальной длины.

Если длина сегмента, входящего в выбранный путь, не максимальна, то рассчитывается двойное (круговое) время прохождения в каждом сегменте выделенного пути по формуле: ts = L*tl + to, где L – это длина сегмента в метрах (при этом надо учитывать, тип сегмента: начальныйпромежуточный или конечный ).

Если длина сегмента равна максимально допустимой, то из таблицы для него берется величина максимальной задержки tm.

Суммарная величина задержек всех сегментов выделенного пути не должна превышать предельной величины 512 битовых интервалов (51,2 мкс).

Затем необходимо проделать те же действия для обратного направления выбранного пути (то есть в данном случае конечный сегмент считается начальным и наоборот). Из-за разных задержек передающих и принимающих узлов концентраторов величины задержек в разных направлениях могут отличаться (но незначительно).

Если задержки в обоих случаях не превышают величины 512 битовых интервалов, то сеть считается работоспособной.

К примеру, можно произвести расчет, считая начальным сегментом 10BASE2, а конечным 10BASE-T:

Начальный сегмент 10BASE2 имеет максимально допустимую длину (185 метров), для него следует взять из таблицы величину задержки 30,8.

Промежуточный сегмент 10BASE5 также имеет максимально допустимую длину (500 метров), поэтому для него нужно взять из таблицы величину задержки 89,8.

Оба промежуточных сегмента 10BASE-FL имеют длину 500 метров, следовательно, задержка каждого из них будет вычисляться по формуле:

500 * 0,100 + 33,5 = 83,5.

Конечный сегмент 10BASE-T имеет максимально допустимую длину (100 метров), поэтому величина задержки для него в таблице равняется 176,3.

В путь наибольшей длины входят также шесть AUI-кабелей: два из них (в сегменте 10BASE5) показаны на рисунке, а четыре (в двух сегментах 10BASE-FL) не показаны, но в реальности вполне могут присутствовать. Можно считать, что суммарная длина всех этих кабелей равна 200 метрам, то есть четырем максимальным длинам. Тогда задержка на всех AUI-кабелях будет равна:

4 * 5,1 = 20,4

В результате суммарная задержка для всех пяти сегментов составит:

30,8 + 89,8 + 83,5 + 83,5 + 176,3 + 20,4 = 484,3

что меньше, чем предельно допустимая величина 512, то есть сеть работоспособна.

Теперь можно рассчитать суммарную задержку для того же пути, но в обратном направлении. При этом начальным сегментом будет 10BASE-T, а конечным – 10BASE2. В результате в конечной сумме изменятся только два слагаемых ( промежуточные сегменты остаются промежуточными ). Для начального сегмента 10BASE-T максимальной длины задержка составит 26,6 битовых интервалов, а для конечного сегмента 10BASE2 максимальной длины задержка составит 188,5 битовых интервалов. Суммарная задержка будет равняться:

26,6 + 83,5 + 83,5 + 89,8 + 188,5 + 20,4 = 492,3

что опять же меньше 512. Работоспособность сети подтверждена.

Однако для того, чтобы сделать окончательный вывод о работоспособности сети, расчета двойного времени прохождения, в соответствии со стандартом, еще не достаточно.

Второй расчет, применяемый в этой модели, проверяет соответствие стандарту величины межпакетного интервала (IPG). Эта величина изначально не должна быть меньше, чем 96 битовых интервалов (9,6 мкс), то есть только через 9,6 мкс после освобождения сети абоненты могут начать свою передачу. Однако при прохождении пакетов (кадров) через репитеры и концентраторы межпакетный интервал может сокращаться, вследствие чего два пакета могут в конце концов восприниматься абонентами как один. Допустимое сокращение IPG определено стандартом в 49 битовых интервалов (4,9 мкс).

Для вычислений здесь так же, как и в предыдущем случае, используются понятия начального и промежуточного сегментов. Конечный сегмент не вносит вклада в сокращение межпакетного интервала, так как пакет доходит по нему до принимающего компьютера без прохождения репитеров и концентраторов.

Сегмент

Начальный

Промежуточный

10BASE2

16

11

10BASE5

16

11

10BASE-T

16

11

10BASE-FL

11

8

Для получения полной величины сокращения IPG надо просуммировать величины из таблицы для сегментов, входящих в путь максимальной длины, и сравнить сумму с предельной величиной 49 битовых интервалов. Если сумма меньше 49, можно сделать вывод о работоспособности сети. Для гарантии расчет производится в обоих направлениях выбранного пути.

Максимальный путь здесь – между двумя нижними по рисунку компьютерами. Можно взять в качестве начального сегмента 10BASE2. Для него сокращение межпакетного интервала равно 16. Далее следуют промежуточные сегменты10BASE5 (величина сокращения равна 11) и два сегмента 10BASE-FL (каждый из них внесет свой вклад по 8 битовых интервалов). В результате суммарное сокращение межпакетного интервала составит:

16 + 11 + 8 + 8 = 43,

что меньше предельной величины 49. Следовательно, данная конфигурация и по этому показателю будет работоспособна.

Вычисления для обратного направления по этому же пути дадут тот же результат, так как начальный сегмент 10BASE-T даст ту же величину, что и начальный сегмент 10BASE2 (16 битовых интервалов). А все промежуточные сегменты останутся промежуточными.

25 Технология Token Ring (802.5). Основные характеристики и принцип маркерного доступа к разделяемой среде.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером.

Технология Token Ring была разработана компанией IBM в 1984 г., а затем была передана в качестве проекта стандарта в комитет IEEE 802, который на ее основе в 1985 году принял стандарт IEEE 802.5. Компания IBM использует технологию Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается. Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.

 

2. Маркерный метод доступа к разделяемой среде

В сетях с маркерным методом доступа право на доступ к среде передается циклически от станции к станции по логическому кольцу. Кольцо образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер.

Получив маркер, станция анализирует его, при необходимости модифицирует и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой.

При поступлении кадра данных к одной или нескольким станциям, эти станции копируют для себя этот кадр и вставляют в этот кадр подтверждение приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и выдает новый маркер для обеспечения возможности другим станциям сети передавать данные.

На рис.1 описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце из 6 станций от станции 1 к станции 3. Время удержания одной станцией маркера ограничивается тайм-аутом удержания маркера (обычно по умолчанию равно 10 мс), после истечение, которого станция обязана передать маркер далее по кольцу.

В сетях Token Ring 16 Мб/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно и приближается к 80 % от номинальной.

Для различных видов сообщений передаваемым данным могут назначаться различные приоритеты.

Каждая станция имеет механизмы обнаружения и устранения неисправностей сети, возникающих в результате ошибок передачи или переходных явлений (например, при подключении и отключении станции).

Не все станции в кольце равны. Одна из станций обозначается как активный монитор, что означает дополнительную ответственность по управлению кольцом. Активный монитор осуществляет управление тайм-аутом в кольце, порождает новые маркеры (если необходимо), чтобы сохранить рабочее состояние, и генерирует диагностические кадры при определенных обстоятельствах. Активный монитор выбирается, когда кольцо инициализируется, и в этом качестве может выступить любая станция сети. Если монитор отказал по какой-либо причине, существует механизм, с помощью которого другие станции (резервные мониторы) могут договориться, какая из них будет новым активным монитором. Активный монитор каждые 3 сек генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 сек., то остальные станции выбирают новый активный монитор

 

26 Форматы кадров Token Ring: маркер, кадр данных, прерывающая последовательность.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]