
- •Билет №1
- •Коэффициент Пуассона
- •Билет №2
- •1. Аксиомы статики.
- •2. Эпюры продольных сил и нормальных напряжений.
- •Билет №3
- •2. Диаграмма растяжений малоуглеродистой стали.
- •2. Условие прочности при растяжении, сжатии
- •1. Графический способ определения равнодействующей системы сходящихся сил.
- •2. Расчет на прочность при растяжении, сжатии.
- •1. Проекция сил на ось.
- •2. Сдвиг: абсолютный и относительный сдвиг, напряжение.
- •1 Проекция равнодействующей системы сходящихся сил на ось.
- •2. Закон Гука при сдвиге
- •1. Условия равновесия плоской системы сходящихся сил
- •2. Расчет на прочность при сдвиге.
- •1. Па́ра сил — совокупность двух сил, которые приложены к одному абсолютно твёрдому телу и при этом равны по модулю и противоположны по направлению.
- •2. Закон распределения напряжений при кручении бруса.
- •Билет №12
- •2. Зависимость максимального напряжения при кручении от величины крутящего момента.
- •Билет №13
- •1. Сложение пар. Условие равновесия пар.
- •2. Условие прочности при кручении.
- •Билет №14
- •1. Привидение силы к точке. Теорема Пуансо.
- •2. Расчет на прочность при кручении.
- •Билет №15
- •1. Привидение сил к центру. Главный вектор и главный момент.
- •Билет №16
- •1. Теорема Вариньона.
- •2. Связь полярного и осевых моментов инерции.
- •Билет №17
- •Билет №18
- •1. Условие равновесия произвольной системы сил.
- •2 .Вычисление моментов инерции простых и сложных сечений.
- •Билет №19
- •1. Понятие о центре тяжести тела.
- •2 .Поперечный изгиб прямого бруса.
- •Билет №20
- •1.Центр тяжести сложного сечения определяется из условия:
- •2.Внутренние силовые факторы при изгибе.
- •Билет №21
- •1.Задача сопротивления материалов.
- •2. Теорема Журавского
- •Билет №22
- •1.Методы сечений
- •2. Построение эпюр поперечных сил и изгибающих моментов.
- •Билет №23
- •1.Понятие напряжения.
- •2.Закон распределения нормальных напряжений по сечению балки при изгибе.
- •Билет №24
- •1 .Растяжение, сжатие: абсолютное и относительное, удлинение, напряжение.
- •2.Зависимость максимального напряжения при изгибе от величины изгибающего момента.
- •Билет №25
- •1.Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид
- •2.Условие прочности при изгибе.
2 .Вычисление моментов инерции простых и сложных сечений.
Способ вычисления моментов инерции сложных сечений основан на том, что любой интеграл можно рассматривать как сумму интегралов и, следовательно, момент инерции любого сечения вычислять как сумму моментов инерции отдельных его частей.
Поэтому для вычисления моментов инерции сложное сечение разбивается на ряд простых частей (фигур) с таким расчетом, чтобы их геометрические характеристики можно было вычислить по известным формулам или найти по специальным справочным таблицам.
В ряде случаев при разбивке на простые фигуры для уменьшения числа или упрощения их формы сложное сечение целесообразно дополнять некоторыми площадями. Так, например, при определении геометрических характеристик сечения, показанного на рис. 22.5, а, его целесообразно дополнить до прямоугольника , а затем из геометрических характеристик этого прямоугольника вычесть характеристики добавленной части . Аналогично поступают и при наличии отверстий (рис. 22.5, б).
Рис. 22.5
После разбивки сложного сечения на простые части для каждой из них выбирается прямоугольная система координат, относительно которой надо определить моменты инерции соответствующей части. Все такие системы координат принимаются параллельными друг другу для того, чтобы затем путем параллельного переноса осей можно было подсчитать моменты инерции всех частей относительно системы координат, общей для всего сложного сечения.
Как правило, система координат для каждой простой фигуры принимается центральная, т. е. ее начало совпадает с центром тяжести этой фигуры. В этом случае последующий подсчет моментов инерции при переходе к другим параллельным осям упрощается, так как формулы перехода от центральных осей имеют более простой вид, чем от нецентральных.
Следующим этапом является вычисление площадей каждой простой фигуры, а также ее осевых и центробежного моментов инерции относительно осей выбранной для нее системы координат. Статические моменты относительно этих осей, как правило, равны нулю, так как для каждой из частей сечения эти оси обычно являются центральными. В случаях, когда это нецентральные оси, необходимо вычислять статические моменты.
Полярный момент инерции вычисляется только для круглого (сплошного или кольцевого) сечения по готовым формулам; для сечений других форм эта геометрическая характеристика не имеет какого-либо значения, так как при расчетах она не используется.
Осевые и центробежный моменты инерции каждой простой фигуры относительно осей ее системы координат подсчитываются по имеющимся для такой фигуры формулам или таблицам. Для некоторых фигур имеющиеся формулы и таблицы не позволяют определить необходимые осевые и центробежный моменты инерции; в этих случаях приходится пользоваться формулами перехода к новым осям (обычно для случая поворота осей).
Билет №19
1. Понятие о центре тяжести тела.
Если размеры тела малы по сравнению с радиусом Земли, то можно считать, что силы тяжести всех частиц тела образуют систему параллельных сил. Их равнодействующая называется силой тяжести, а центр этих параллельных сил – центром тяжести тела. Центр тяжести – это точка, через которую при любом положении тела проходит линия действия его силы тяжести.