Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_po_materialam.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
118.19 Кб
Скачать

Влияние добавок

Минеральные и органические добавки применяют для получения удобоукладываемой растворной смеси при использовании портландцементов. В качестве эффективных минеральных добавок в цементные растворы вводят известь в виде теста. Добавка извести в цементных растворах повышает водоудерживающую способность, улучшает удобоукладываемость и дает экономию цемента. В качестве неорганических дисперсных добавок применяют активные минеральные добавки — диатомит, трепел, молотые шлаки и т. д.

Поверхностно-активные добавки используют для повышения пластичности растворной смеси и уменьшения расхода вяжущего, вводят в растворы десятые и сотые доли процента от количества вяжущих. В качестве поверхностно-активной органической добавки применяют сульфитно-дрожжевую бражку (СДБ), гид-ролизированную боенскую кровь (ГК), мылонафт, гидрофобно-пластифицирующую добавку «флегматор» и др.

Требования к качеству вяжущих, заполнителей, добавок и Воды такие же, как и к материалам, применяемым для приготовления бетонов.

Билет 16

Отделочные растворы

Отделочные растворы предназначены для отделки поверхности наружных и внутренних стен зданий и сооружений. Они состоят из тех же компонентов, что и кладочные, но обладают декоративно-художественными свойствами и к ним предъявляются меньшие требования по прочности.

Классификация Состав и условия применения

Штукатоурные растворы - используют цементно-известковые и известково-гипсовы растворы. Цементно известковые и цементные используют для получения прочных, быстротвердещих и водостойких штукаторок.

Их применяют для отшкуривания конструкицй , систематически увлажняющихся при эксплуатации (наружные стены, цоколи, парапеты). Известково-гипсовые оштукатуривают внутренние деревянные и каменные стены. В качестве вяжущего увеличивает скорость твердения и прочность сцепления известкового раствора с основанием, особенно деревянным.

Билет 17

Растворы для каменной кладки. Материалы для приготовления, свойства, области применения

Составы кладочных растворов и вид исходного вяжущего зависят от характера конструкций и условий их эксплуатации.

Растворы для каменных кладок и для кладки крупных элементов стен и их монтажа приготовляют на вяжущих следующих видов: на портландцементе и шлакопортландцементе — для монтажа стен из панелей и крупных бетонных и кирпичных блоков, для изготовления виброкирпичных панелей и крупных блоков, для обычной кладки на растворах высоких марок, а также для кладки, выполняемой способом замораживания; на основе извести, если не требуются растворы высоких марок, и местных вяжущих (известково-шлаковых и известково-пуццолановых) — для малоэтажного строительства; растворы на местных вяжущих не следует применять при температуре ниже 10°С; на пуццолановом и сульфатостойком портландцементе применяют для конструкций, работающих в условиях воздействия агрессивных и сточных вод.

Строительные кладочные растворы изготовляют трех видов: цементные, цементно-известковые и известковые.

Цементные растворы применяют для подземной кладки и кладки ниже гидроизоляционного слоя, когда грунт насыщен водой, т. е. в тех случаях, когда необходимо получить раствор высокой прочности и водостойкости.

Цементно-известковые растворы представляют собой смесь цемента, известкового теста, песка и воды. Эти растворы обладают хорошей удобоукладываемостью, высокой прочностью и морозостойкостью. Цементно-известковые растворы применяют для возведения подземных и надземных частей зданий.

Известковые растворы обладают высокой пластичностью и удобоукладываемостью, хорошо сцепляются с поверхностью, имеют малую усадку. Они отличаются довольно высокой долго вечностью, но являются медленнотвердеющими. Известковы растворы применяют для конструкций, работающих в надземных частях зданий, испытывающих небольшое напряжение. Состав известковых растворов зависит от качества применяемой извести.

Кладочные растворы приготовляют на песке для кладки стен из камней правильной формы крупностью до 2,5 мм, а для бутовой кладки из бутовых камней — до 5 мм.

Билет 18

Физические свойства строительных материалов (плотность, пористость и др.)

  1. Истинная плотность ρ — масса единицы объёма материала в абсолютно плотном состоянии. ρ =m/Va, где Va объём в плотном состоянии. [ρ] = г/см³; кг/м³; т/м³. Например, гранит, стекло и другие силикаты практически абсолютно плотные материалы. Определение истинной плотности: предварительно высушенную пробу измельчают в порошок, объём определяют в пикнометре (он равен объёму вытесненной жидкости).

  2. Средняя плотность ρm=m/Ve — масса единицы объёма в естественном состоянии. Средняя плотность зависит от температуры и влажности: ρm=ρв/(1+W), где W — относительная влажность, а ρв — плотность во влажном состоянии.

  3. Насыпная плотность (для сыпучих материалов) — масса единицы объёма рыхло насыпанных зернистых или волокнистых материалов.

  4. Пористость П — степень заполнения объёма материала порами. П=Vп/Ve, где Vп — объём пор, Ve — объём материала. Пористость бывает открытая и закрытая.

Открытая пористость По — поры сообщаются с окружающей средой и между собой, заполняются водой при обычных условиях насыщения (погружении в ванну с водой). Открытые поры увеличивают проницаемость и водопоглощение материала, снижают морозостойкость.

Закрытая пористость Пз=П-По. Увеличение закрытой пористости повышает долговечность материала, снижает звукопоглощение.

Пористый материал содержит и открытые, и закрытые поры

Методы определения

Билет 19

Водопоглощение и морозостойкость строительных материалов Методы определения

Водопоглощение — это свойство материала впитывать и удерживать в порах воду.

Для определения водопоглощения образцы высушивают до постоянного веса, взвешивают и насыщают водой.

В зависимости от вида материала насыщения водой проводят в разных условиях и с разными сроками выдержки. Например, для каменных материалов — 48 часов, для древесины — 30 суток. Для определения водопоглощения керамических плиток для полов их кипятят в течение 1 часа.

Образцы после водонасыщения вынимают из сосуда с водой, обтирают тряпкой и взвешивают.

Морозостойкими называют такие материалы, которые выдерживают определенное количество циклов предварительного замораживания и размораживания без снижения прочности на сжатие не более 25% (для гидротехнического бетона не более 15%) или без потери веса не более 5%.

Замораживание воды, которая заполняет поры материала, сопровождается увеличением ее объема примерно на 9%, в результате чего возникает давление на стенки пор, что приводит к разрушению материала.

Для определения морозостойкости существуют специальные холодильные камеры, которые обеспечивают температуру ниже -15 ° С.

Время циклов замораживания и размораживания равно 4-6 часов и зависит от вида материала и размера образцов.

Перед исследованием образцы насыщают водой. Замораживание проводят по температуре -15 — 20 ° С, а размораживание в сосуде с водой при температуре +15-20 ° С.

Билет 20

Прочность строительных материалов, виды прочности, методы определения

Прочность материала – это свойство сопротивления разрушению под действием напряжения, которое вызвано внешними нагрузками. Количественной характеристикой прочности является предел прочности материала, который численно равный разрушающему напряжению для данного материала. Вследствие того, что строительные материалы отличаются неоднородностью, то предел их прочности определяется средним результатом испытания серии образцом. В экспериментальных исследованиях для определения прочности строительных материалов применяют образцы, имеющие правильную геометрическую форму – призмы, кубы, стержни, цилиндры, полоски. Процедура испытания, размеры образцов, скорость и вид нагрузок, правила обработки результатов должны быть выдержаны в строгом соответствии с существующими требованиями стандарта. Отметим, что размеры и форма образцов, а также состояние опорных поверхностей в значительной мере влияют на результаты испытаний. Так, например, кубики малых размеров имеют более высокий предел прочности при сжатии, чем кубики, изготовленные из того же материала, однако имеющие больший размер. Этот факт объясняет то, что при сжатии возникает поперечное расширение образца. Силы трения, которые возникают между плитами пресса и опорными гранями образца, удерживают частицы образца, которые прилегают к плитам, от разрушения и поперечного расширения. Как правило, строительные материалы испытывают растягивающей или сжимающей нагрузкой. Однако прочность также можно измерять при срезе, изгибе и пр.  Испытывая поперечное расширение, средние части образца расширяются в первую очередь. Вследствие испытания кубов из хрупких строительных материалов (раствора, бетона, камня и пр.) образовывается форма разрушения в виде 2-х усеченных пирамид, которые сложены вершинами. Если опорные грани куба хорошо смазать, например, парафином, то силы трения уменьшаются. При этом вследствие свободного поперечного расширения куб распадется на несколько слоев, которые разделены вертикальными трещинами. Результаты исследований показывают, что прочность при сжатии образца со смазанными опорными поверхностями составляет примерно 50% прочности аналогичного образца, опорные поверхности которого не смазаны. 

Билет 21

Огнеупорность и огнестойкость строительных материалов. Для каких материалов эти показатели имеют важное значение?

Огнестойкостью называется способность материалов сохранять свои физико-механические свойства при воздействии огня и высоких температур (до 10 000С). Воздействие огня на одни материалы (т.к. известняк, мрамор и т.д.) может привести к химическому разложению, другие могут плавиться (алюминий), третий начинают деформироваться и разрушаться (гранит).

Огнестойкость строительных материалов выражается пределом огнестойкости временем (ч), которое материал способен сопротивляться огню прежде чем начнёт терять свою прочность. Так, например, незащищённые стальные конструкции имеют предел огнестойкости 0,5ч. А железобетон 1-2 ч.

Во время оценки огнестойкости материала, кроме огня, стоит учитывать воздействие воды и жидкостей, применяемых при тушении пожара, а так же некоторые химические соединения, выделяемые определёнными материалами при сгорании.

По степени огнестойкости стройматериалы можно разделить на сгораемые, трудносгораемые и несгораемые.

Сгораемые материалы, такие как древесина, битумные, дёгтевые, полимерные, воспламеняются при контакте с огнём, горят и тлеют. После устранения источника огня процесс сгорания всё равно продолжается.

Трудносгораемые материалы (на пример фибролит) воспламеняются с трудом, однако тлеют и обугливаются. Если источник огня убрать, горение прекратится.

Несгораемые материалы (неорганические материалы, металлы) при пожаре не воспламеняются, не тлеют и не обугливаются. Некоторые из них (бетоны, глиняный кирпич) почти не деформируются и не трескаются, иные же могут деформироваться (сталь) либо разрушиться (гранит, мрамор).

Огнеупорность — свойство материала выдерживать длительное воздействие высокой температуры, не деформируясь и не расплавляясь.   Материалы,   выдерживаю щие температуру более 1580 °С, называют огнеупорными, от 1350 до 1580 СС — тугоплавкими, ниже 1350 °С — легкоплавкими. Материалы, которые способны длительное время выдерживать воздействие температур до 1000 °С без потери или с незначительной потерей прочности, относят к жаростойким (жаростойкие бетон, кирпич и др.).

Билет 22

Минеральные вяжущие вещества Классификация Добавки

Минеральными вяжущими веществами называют тонкоизмельченные порошки, образующие при смешивании с водой пластичное тесто, под влиянием физико-химических процессов переходящее в камневидное состояние. Это свойство вяжущих веществ используют для приготовления на их основе растворов, бетонов, безобжиговых искусственных каменных материалов и изделий. Различают минеральные вяжущие вещества воздушные и гидравлические.

Воздушные вяжущие вещества твердеют, долго сохраняют и повышают свою прочность только на воздухе. К воздушным вяжущим веществам относятся гипсовые и магнезиальные вяжущие, воздушная известь и кислотоупорный цемент.

Гидравлические вяжущие вещества способны твердеть и длительно сохранять свою прочность не только на воздухе, но и в воде. В группу гидравлических вяжущих входят портландцемент и его разновидности, пуццолановые и шлаковые вяжущие, глиноземистый и расширяющиеся цементы, гидравлическая известь. Их используют как в надземных, так и в подземных и подводных конструкциях.

Наряду с этим различают вяжущие вещества, эффективно твердеющие только при автоклавной обработке — давлении насыщенного пара 0,8...1,2 МПа и температуре 170...200°С. В группу вяжущих веществ автоклавного твердения входят известково-кремнеземистые и известково-нефелиновые вяжущие.

Билет 23

Строительный гипс

Сырье, схема получения, свойства, применение

Гипс строительный - белый или сероватый порошок тонкого помола, получаемый из гипсового камня (природного гипса) путём обжига при температуре 140- 190 С; быстросхватывающееся и быстро-твердеющее вяжущее вещество. Гипс строительный применяется для штукатурных работ, изготовления гипсобетона, гипсовых строительных изделий, отливок, форм, а также в качестве добавки к др. вяжущим (например, извести, цементам). Выпускается 12 марок гипса строительного. Для отделочных работ в помещении используют в основном гипс строительный марок от Г-2 до Г-7 (группа Б), имеющий прочность при сжатии 0,2-0,7 МПа (2-7 кгс/см2), с началом схватывания не ранее 6 мин и окончанием схватывания не позднее 30 мин. Строительный гипс (или как его иначе называют алебастр) - единственное вяжущее вещество, которое в процессе твердения расширяется и увеличивается в объёме до 1 %, в то время как известковое тесто и цемент при твердении дают значительную усадку.

Быстрое схватывание (твердение) гипсовых строительных растворов не всегда удобно. Чтобы замедлить схватывание, к гипсу добавляют известковый или глиняный раствор либо специальный замедлитель из 0.5-2%-ного раствора буры (все растворы готовят на воде). Затвердевший гипс характеризуется высокой прочностью и относительно низкой плотностью (1200-1500 кг/м3); он более чем в 2 раза легче затвердевшего цемента, а значит, и существенно менее теплопроводен.

При работе с гипсовыми растворами следует иметь в виду, что затвердевающее гипсовое тесто при перемешивании отмолаживается и перестаёт схватываться. Такой раствор, нанесённый на поверхность, не имеет прочности - при высыхании появляются трещины и покрытие разрушается. Растворы с гипсом готовят небольшими порциями (т. н. заводками), которые должны быть использованы в течение нескольких минут.

Хранить гипс, как и цемент, следует в сухом помещении в прочных полиэтиленовых мешках на высоте 30-50 см от земли Однако даже при правильном хранении гипс со временем утрачивает свои свойства и по истечении гарантийного срока его необходимо испытать на пригодность. Для проверки качества небольшую порцию гипса (100 г) нужно затворить водой до густоты сметаны, положить на металл или стекло и определить время от момента приготовления гипсового теста до начала его схватывания; для каждой марки гипса оно должно соответствовать установленным показателям.

Билет 24

Воздушная известь Сырье, производство, применение

воздушной известью называют продукт обжига (до удаления углекислоты) кальциево-магниевых карбонатных пород — известняка, мела, ракушечника и доломитизированного известняка, содержащих не более 6% глинистых примесей. Строительная воздушная известь подразделяется: а) по виду содержащегося в ней основного окисла — на кальциевую, магнезиальную и доломитовую; б) по внешнему виду — на комовую и порошкообразную. Порошкообразная известь подразделяется на молотую и гидратную (пушонку), получаемую путем гидратации (гашения) извести.

Производство воздушной извести состоит из добычи сырья, дробления, сортировки его и обжига обычно в шахтных печах. B зависимости от вида топлива шахтные печи бывают пересыпные, когда короткопламенное твердое топливо загружается в печь вперемежку с сырьем послойно; печи с выносными топками для твердого длиннопламенного топлива и печи, работающие на газовом топливе. Высота шахтных печей колеблется для разных конструкций от 8—20 м, диаметр их до 4 м. Наиболее экономичными являются печи, работающие по пересыпному способу. Они представляют собой шахту круглого поперечного сечения, выложенную из красного кирпича и футерованную внутри шамотом (огнеупорным кирпичом). Для увеличения прочности шахты она стянута снаружи металлическими кольцами и имеет отверстия для наблюдения за процессом обжига. Печи оборудуют скиповыми подъемниками для автоматической послойной загрузки сырья и топлива, а также устройством для выгрузки готовой извести, вентиляторами для увеличения тяги, дымососами и т. п.

Сырье и топливо загружают в печь сверху послойно через загрузочное устройство; двигаясь вниз, сырье обогревается отходящими горячими газами, образующимися при сгорании топлива. В средней части шахты (зона обжига), где температура достигает 1000—1200° С, происходит разложение углекислого кальция и образование извести-кипелки по реакции СаСО3-177,7 кДж. Проходя зону обжига, куски извести опускаются постепенно в нижнюю часть печи (зона охлаждения) и выгружаются с помощью специального устройства. Производительность шахтных печей колеблется в широких пределах и составляет в среднем от 25 до 120 т извести в сутки.

Билет 25

Портландцемент. Сырье, схема производства

Портландцемент — гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Спекшаяся сырьевая смесь в виде зерен размером до 40 мм называется клинкером; от качества его зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях.

Клинкер. Качество клинкера зависит от его химического и минералогических составов. Для производства портландцементного клинкера применяют известняк и глину. Известняк в основном состоит из двух оксидов: СаО и СО2, а глина — из различных минералов. В процессе обжига сырьевой смеси удаляется СО2, a оставшиеся четыре оксида образуют клинкерные минералы

Сырье – для получения портланцдцемента влючает такие сырьевые материалы, которые содержат много карбонатов кальция (известняк) и алюмосиликатов (глины, доменные шлаки, нефелиновый шлам). Для нужного химического состава сырьевой смеси применяют корректирующие добавки, содержащие недостоющие оксиды.

Производство

Основано на получении искусственноого камня(клинкера) в условиях химического взаимодействия между компонентами сырьевой смеси в пиропластическом состоянии при температуре 1450С.

Этапы

-подготовка сырьевой смеси

-обжиг до спекания

-охлаждение и помол

Билет 26

Минералы портландцементного клинкера.

Ориентировочное содержание основных четырех минералов в портландцементном клинкере составляет в процентах по массе:

Алит – 40-65%

Белит – 15-40%

Целит1 – 5-15%

Целит2 -10-20%

Основные свойства портландцемента.

Тонкость помола — один из факторов, определяющих быстроту твердения и прочность цементного камня. Обычный портландцемент измельчают довольно тонко — остаток на сите № 008 (4900отв/см2) не должен превышать 15%, что соответствует удельной поверхности цемента 2500...3000 ем2/г.

 Водопотребность портландцемента характеризуется  количеством воды (% массы цемента), которое необходимо для получения цементного теста нормальной густоты, т. е. заранее заданной стандартной пластичности, определяемой погружением в тесто цилиндра пестика прибора Вика. Водопотребность зависит от минерального состава и тонкости помола цемента и колеблется в пределах 22...26 %.

 Сроки схватывания и равномерность изменения объема цемента определяют на тесте нормальной густоты. Начало схватывания цементного теста должно наступать не ранее 45 мин, а конец схватывания — tie позднее 10 ч. Сроки схватывания определяют с помощью прибора Вика путем погружения иглы этого прибора в тесто нормальной густоты. Для получения нормальных сроков схватывания при помоле клинкера вводят добавку двуводного гипса, а в случае необходимости — специальные добавки— замедлители или ускорители схватывания.

Билет 27

Добавки используемые при производстве керамических изделий, их вид, назначение.

Для получения керамических изделий с определенными свойствами в глину вводят различные добавки. Отощающие добавки (кварцевый песок, дегидратированную глину*, шамот **, бой кирпича, измельченный шлак, золу и др.) вводят для уменьшения пластичности глин и, следовательно, линейной усадки при сушке и обжиге за счет меньшей водопотребности глиняного теста. Выгорающие добавки (древесные опилки, угольный порошок, торфяную пыль, коксовую мелочь, золы ТЭС и др.) вводят для получения изделий с меньшей средней плотностью и повышенной пористостью. Опилки улучшают формовочные свойства глиняной массы, но снижают прочность изделий и повышают водопоглощение. Однако благодаря длинным волокнам они армируют глиняную массу и повышают сопротивление разрыву и трещиностойкость в сушке. Обогащающие и пластифицирующие добавки (высокопластичные глины, бентонитовые глины***, отходы при добыче угля, ЛСТ и др.) вводят в глины для обогащения малоглиноземистого сырья, увеличения его пластичности, улучшения формовочных и сушильных свойств глин. Плавни вводят в сырьевую смесь для того, чтобы повысить Плотность изделий, получить сплавленную массу. Они способны при обжиге образовывать с SiO2 и Al2O3более легкоплавкие силикатные расплавы. Плавни представляют собой горные породы и минералы магматического (пегматит, сиенит, полевые шпаты, порфиры, гранит) или осадочного (известняк, доломит, магнезит) происхождения.

Билет 28

Кирпич керамический Сырье, схемы производства, свойства, применение.

Кирпич керамический разделяют на три вида по назначению. Строительный керамический кирпич или рядовой используется для строительства внутренних и наружных стен конструкций. Облицовочный или лицевой кирпич с качественной наружной поверхностью может выдержать неблагоприятное воздействие на него воды или мороза, и применяется для большинства наружных работ. В конструкциях для особых условий применения используется специальный кирпич.  Плотность керамического кирпича прямо пропорциональна его прочности и обратно пропорциональна его теплопроводности. Она определяется соотношением массы кирпича к его объему. Прочность же кирпича (маркируется буквой М) можно охарактеризовать пределом прочности при воздействии сил сжатия, изгиба, растяжения. Прочность определяет способность материала под воздействием каких-либо внешних сил противостоять разрушению. Она имеет такие марки, как 50 или 75 и другие. При кладке многоэтажных домов можно использовать кирпич с невысокой прочностью.  Строительный кирпич имеет хорошую морозостойкость и малую теплопроводность. Морозостойкость определяется способностью материала выдерживать несколько циклов замораживания и оттаивания без существенных его повреждений или ухудшения свойств. К примеру, строительный кирпич должен выдерживать не меньше 25 циклов, а лицевой - не меньше 50 циклов. Теплопроводность же - это свойство кирпича при наличии разных температур внутри и снаружи помещения передавать теплоту. Она зависит от таких факторов, как пористость, влажность, природа материала. 

Билет 29

Силикатный кирпич и его разновидности.

Состав, свойства, условия применения.

Материалом автоклавного синтеза можно назвать силикатные камни и, конечно же, силикатный кирпич и блоки. Такой кирпич изготавливается путем полусухого прессования смеси. Смесь состоит из таких компонентов, как: вода, известь воздушная и песок кварцевый. Смеси придают форму определенных размеров будущего кирпича, затем подвергают обработке в автоклаве: воздействуют насыщенным водяным паром, температура составляет около 200 °С, давление пара достигает 12-ти атмосфер. В итоге получается искусственный камень при синтезе гидросиликатов.  Во время изготовления силикатный кирпич приобретает определенную водостойкость и необходимую прочность (маркируется она, к примеру, М-150). Но, в общем, в водной среде устойчивость кирпича очень низкая. Такая характеристика кирпича, как морозостойкость (F35, F25 или F15) довольно разная и зависит от влияния климатического пояса. Размеры силикатного кирпича бывают: 250х120х65 мм, 250х120х138 мм, 250х120х88 мм, соответственно, одинарный, двойной и полуторный.  Теплопроводность силикатных сухих камней имеет нижнюю границу 0,35 Вт/(м 'С) и верхнюю 0,7. Она зависит линейно от средней плотности кирпича и не зависит от расположения и частоты пустот. Чтобы стены максимально удерживали тепло, необходимо вести кладку аккуратно, причем, многопустотными камнями, имеющими плотность не более 1450 кг/м3. Но, в основном, силикатный кирпич используется не в однородных конструкциях, а комбинируется с теплоизоляцией. Однако большой плюс этого кирпича в хорошей звукоизоляции, что очень важно для стен между комнатами или квартирами.  Силикатный кирпич очень прочен, его прочность сравнима с природным камнем. Также такой камень достаточно устойчив при воздействии на него различных агрессивных факторов. Большим плюсом для силикатного кирпича является высокая огнестойкость. Однако наряду с вышеперечисленными «сильными» свойствами, есть и слабые стороны. Наблюдается достаточно высокий адсорбент влаги, влага поглощается из окружающей среды. А вес материала достаточно велик, к тому же присутствует низкая адгезия с раствором из цемента. И применение силикатного кирпича очень ограничено.

Билет 30

Силикатные бетоны, их разновидности.

Область применения.

Силикатный бетон представляет собой искусственный строительный состав сложного приготовления. Силикатный бетон получается из уплотненной отвердевшей увлажненной смеси, в которую входят молотая негашеная известь, молотый кварцевый песок и обычный кварцевый песок, соединенные в автоклаве. Существуют разновидности силикатного бетона:  • тяжелый – в качестве заполнителя песок, щебень или гравий;  • легкими – в качестве заполнителя керамзит или аглопорит; • ячеистый.  Кроме того, силикатный бетон может быть мелкозернистым с размером зерен заполнителя до 5 мм и крупнозернистым с размером зерен более 5 мм. Более широкое применение получил тяжелый мелкозернистый силикатный бетон. Предел прочности при сжатии подобного силикатного бетона варьируется от 15 до 50 МПа. Однако, возможно получение высокопрочного силикатного бетона с более высоким пределом прочности до 80 МПа и более. Силикатный бетон имеет высокую морозостойкость. Возможность замораживания и оттаивания силикатного бетона без разрушений структуры составляет 300 циклов. Силикатный бетон обладает достаточной водостойкостью и стойкостью к воздействию агрессивных сред.  Силикатный бетон может быть армирован, в связи с чем, нашел широкое применение в промышленном и гражданском строительстве наравне с обычными цементными бетонами. Плотный силикатный бетон применяют в изготовлении несущих конструкций: панелей стен и перекрытий, лестничных пролетов, балок, колонн и плит. Из особо прочного силикатного бетона изготовляют напряженно-армированные железнодорожные шпалы, шифер без содержания асбеста и другие изделия. Также силикатный бетон применяется в тюбингах для шахтного строительства и метро, для строительства оснований дорог общего пользования.

 

Билет 31

Битумные вяжущие материалы(производство, свойства)

Битумными называют строительные материалы, в состав которых входят битумы. Битумные вещества представляют собой сложные смеси углеводородов и их производных. При нормальной температуре это твердые массы или густые жидкости темного, почти черного цвета. Они не растворяются в воде, а многие из них и в кислотах, но растворяются в сероуглероде, хлороформе, бензоле и других органических растворителях. В зависимости от исходного сырья битумные вяжущие вещества делятся на нефтяные и природные.

Нефтяные битумы получают из сырой нефти на нефтеперегонных заводах. По способу производства нефтяные битумы делят на остаточные, окисленные, крекинговые и компаундированные. Остаточные битумы, или гудрон, получают в атмосферно-вакуумных установках непрерывного действия после отгонки из высокосмолистой нефти бензина, керосина и других топливных и масляных фракций. При нормальной температуре они представляют собой твердые вещества с небольшой вязкостью. Окисленные битумы изготовляют путем продувки кислородом воздуха через гудроны, крекинг-остатки и другие нефтяные остатки. При такой продувке под действием кислорода воздуха нефтяные остатки окисляются и уплотняются, увеличивая вязкость. Крекинговые битумы представляют собой остатки после разложения (крекинга) нефти и нефтяных масел при высокой температуре с целью получения большого выхода бензина. Полученные крекинговые остатки дополнительно подвергаются окислению, в результате чего образуются окисленные крекинговые битумы. Такие крекинг-битумы обладают повышенной хрупкостью. Компаудированные битумы получают компаундированием (смешением остатков, получающихся при переработке нефти). В строительстве используют только остаточные и окисленные нефтяные битумы. В зависимости от назначения они классифицируются на строительные, кровельные и дорожные.

Природные битумы. Их подразделяют на три вида: пластовые, поверхностные и жильные. Пластовые - это горные породы осадочного происхождения (известняки, доломиты, песчаники), пропитанные битумом. Природные битумы получают из битуминозных песков и песчаников нагреванием, а из битуминозного известняка - экстрагированием. Применение природных битумов в строительстве ограничивается из-за высокой стоимости. Используют их в основном в химической и лакокрасочной промышленности.

Билет 32

Материалы и изделия на основе битумных и дегтевых вяжущих (материалы для мягкой кровли и гидроизоляция)

Битумные и дегтевые вяжущие вещества наряду с полимерами и органическими клеями образуют группу органических вяжущих веществ. На основе этих вяжущих производят большое количество материалов и изделий для строительства: асфальтовые бетоны и растворы, рулонные кровельные и гидроизоляционные материалы, мастики, пасты, эмульсии и некоторые лаки.

 Битумные материалы могут быть как природные, встречающиеся в виде отдельных скоплений или чаще пропитывающие горные породы, так и икс у ест венные, получаемые при переработке нефти. Дегтевые — искусственные материалы, получаемые в заводских условиях при сухой перегонке твердых видов топлива.

Различают следующие группы битумных и дегтевых вяжущих веществ: битумные, состоящие из нефтяных битумов или из сплавов нефтяных и природных битумов; дегтевые — каменноугольные или сланцевые или сплавы дегтевых масел с пеками; смешанного вида — гудрокамовые (продукты совместного окисления каменноугольных масел и нефтяного гудрона); дегте- и битумополимерные, содержащие нефтяные битумы или каменноугольные дегтевые вещества и полимеры. Битумные и дегтевые вяжущие имеют темно-коричневый или черный цвет, поэтому их часто называют «черными вяжущими».

Билет 33

Положительные и отрицательные свойства строительных пластмасс

ПОЛОЖИТЕЛЬНЫЕ:

- малая плотность - от20 до 2200 кг/м3, т.е. в 1,5-2 раза меньше, чем у каменных материалов;

-высокие прочностные характеристики-до 200-300МПа (у древопластиков-200МПа, пластмассы с наполнителями - прочность при сжатии от 120 до 160МПа), Особенность пластмасс - прочность при сжатии и растяжении почти такая же, как при сжатии (у каменных материалов ПРр=0,2ПРсж)

-низкая теплопроводность (0,23-0,7 Вт/мС), у газонаполненных пластмасс- до 0,03, т.е. близка к теплопроводности воздуха

- малая истираемость некоторых пластмасс, В связи с этим в пер­вую очередь эти пластмассы целесообразно внедрять как материалы для покрытия полов;

-прозрачность пластмасс. Обычные стекла пропускают менее 1% ультрафиолетовых лучей, тогда как органические наоборот - более 70%; они легко окрашиваются в различные цвета. Следует отметить их значительно меньшую плотность. Так, стекло из полистирола имеет плотность 1060 кг/м3, тогда как обычное оконное стекло - 2500 кг/м3;

- технологическая легкость обработки (пиление, сверление, фрезе­рование, строгание, обточка и др.), позволяющая придавать изделиям из пластмасс разнообразные формы. Пластмассовые изделия подда­ются склеиванию как между собой, так и с другими материалами (на­пример, с металлом, деревом и др.). Поэтому из пластмасс можно из­готовлять различные комбинированные клееные строительные изде­лия и конструкции;

- относительная легкость сварки материалов из пластмасс (на­пример, труб в струе горячего воздуха) позволяет механизировать работы по монтажу пластмассовых трубопроводов;

- водопоглощение - очень мало и для плотных пластмасс не превышает 1% (положительно для материалов для полов)

- пористость пластмасс можно регулировать в процессе их производства. Так, полимерные пленки, линолеум, стеклопластики практически не имеют пор, а пористость пенопластов может достигать 95-98%

ОТРИЦАТЕЛЬНЫЕ

- низкая теплостойкость (от 70 до 200), но отдельные виды пластмасс (фторопласт, кремнийорганические полимеры) выдерживают нагрев до 300-500.

- малая поверхностная твердость

- высокий коэффициент термического расширения. Он колеблется в пределах 25-120*106, т.е. в 2,5-19 раз более высокий, чем у стали. Это необходимо учитывать при проектировании строительных кон­струкций, особенно крупноразмерных (например, трубопроводов);

- повышенная ползучесть, особенно заметная при повышении температуры

Химические и физико-химические

ПОЛОЖИТЕЛЬНЫЕ

- высокая химическая стойкость- стойкость к действию растворов кислот, щелочей и солей. Однако, многие пластмассы легко растворяются или набухают в органических растворителях. Для каждой пластмассы характерна своя группа растворителей, имеющих родственную к полимеру природу

- способность окрашиваться в разные цвета

- способность некоторых пластмасс образовывать тонкие пленки в сочетании с их высокой адгезией к ряду материалов, вследствие чего такие пластмассы незаменимы как сырье для производства строи­тельных лаков и красок;

 

ОТРИЦАТЕЛЬНЫЕ

- горючесть - является следствием горючести полимеров. Для пластмасс разработаны добавки- антипирены, однако, пластмассы остаются сгораемыми материалами.

- старение- изменение структуры и состава полимерного компонента пластмасс под действием эксплуатационных факторов (солнечный свет, нагрев, кислород), вызывающих ухудшение свойств самой пластмассы. При старении возможно протекание в полимере двух процессов: структурирование (т.е. сшивка молекул), приводящее к потере эластичности, появлению хрупкости и последующем растрескиванию, и деструкция- разложение полимера на низкомолекулярные продукты. В пластифицированных пластмассах возможно также «выпотевание» и улетучивание пластификатора, что также приводит к потере эластичности.

- Возможность выделения из пластмасс токсичных веществ не исключена. Чистые полимеры биологически безвредны, однако в полимерах возможно присутствие остатков мономеров или низкомолекулярных продуктов деструкции полимеров, появившихся в результате нарушения технологических режимов синтеза и переработки. Кроме того, в пластмассу вводят низкомолекулярные продукты (пластификаторы, стабилизаторы), которые тоже могут быть источниками вредностей.

Полная безвредность пластмасс может быть обеспечена при условии соблюдения технологических режимов и тщательном подборе компонентов и соблюдения режимов эксплуатации. При их применении необходима строгая проверка на соответствие санитарным нормам.

 К недостаточно изученным свойствам относятся сроки службы полимерных материалов, а ведь именно долговечность материалов, изменяемость их свойств во времени определяют возможность применения материалов в конструкциях.

Билет 34

Связующие для материалов из пластмасс

Связующее вещество (смола) определяет основные свойства пластмасс. При изготовлении пластмасс наи­более широко применяют искусственные смолы — про­дукты переработки каменного угля, нефти и других ма­териалов. Пластмассы, полученные на основе искусст­венных смол, относятся к полимерным соединениям. Ес­тественные смолы (янтарь, шеллак) и продукты перера­ботки естественных материалов (асфальт, канифоль и др.) применяются значительно реже.

Термореактивные и термопластичные полимеры

Термореактивные полимеры — полимеры с пространственной структурой, которые при нагревании разлагаются, не переходя в вязкотекучее состояние.  Термопластичные полимеры — это полимеры, которые могут подвергаться вторичной термической обработке. пластмасса например Стеклонаполненные термопластичные и термореактивные полимеры успешно применяют для изготовления деталей машин оргтехники, компьютеров и электронного оборудования, таких, как корпуса, кожухи, основания, и других деталей, где необходимы точные допуска на размеры.

Билет 35

Неорганические теплоизоляционные материалы

Неорганические теплоизоляционные материалы и изделия изготовляют на основе минерального сырья (горных пород, шлака, стекла, асбеста). К этой группе относят минеральную, стеклянную вату и изделия из них, некоторые виды легких бетонов на пористых заполнителях (вспученном перлите и вермикулите), ячеистые теплоизоляционные бетоны, пеностекло, асбестовые и асбестосодержащие материалы, керамические и др. Эти материалы используют как для утепления строительных конструкций, так и для изоляции горячих поверхностей промышленного оборудования и трубопроводов.

Свойства, состав, применение

 Минеральная вата и изделия из нее по объему производства занимает первое место среди теплоизоляционных материалов. Этому способствует наличие сырьевых ресурсов для их получения в виде горных пород (доломита, известняка, мергелей, базальта и др.), шлаков и зол; простота технологического процесса; небольшие капиталовложения при организации производства, Минеральная вата состоит из искусственных минеральных волокон. Производство ее включает две основные технологические операции — получение расплава и превращение его в тончайшие волокна. Расплав получают, как правило, в шахтных плавильных печах — вагранках или ванных печах. Превращение расплава в минеральное волокно производят дутьевым или центробежным способом. При дутьевом способе выходящий из печи расплав разбивается на мелкие   капельки струей пара или воздуха, которые вдуваются в специальную камеру и в полете сильно вытягиваются, превращаясь в тонкие волокна диаметром 2...20 мкм. При центробежном способе струя жидкого расплава поступает на быстровращающийся диск центрифуги и под действием большой окружной скорости сбрасывается с него и вытягивается в волокна.

Билет 36

Органические теплоизоляционные материалы.

Состав, свойства, применение

Органические теплоизоляционные материалы и изделия производят из различного растительного сырья: отходов древесины - (стружек, опилок, горбыля и др.), камыша, торфа, очесов льна, конопли, из шерсти животных, а также на основе полимеров. Многие органические теплоизоляционные материалы подвержены быстрому загниванию, порче различными насекомыми и способны к возгоранию, поэтому их предварительно подвергают обработке. Поскольку использование органических материалов в качестве засыпок малоэффективно в силу неизбежной осадки и способности к загниванию, последние используют в качестве сырья для изготовления плит. В плитах основной материал почти полностью защищен от увлажнения, а следовательно, и от загнивания; кроме того, в процессе производства плит его подвергают обработке антисептиками и антипиренами, повышающими его долговечность.

Органические теплоизоляционные материалы применяют для теплоизоляции конструкций при температуре, как правило, не более 100 °С.

В сравнении с неорганическими органические материалы характеризуются меньшей теплопроводностью при одинаковой средней плотности, однако имеют невысокие предельную температуру применения (60... 150 °С) и биостойкость, являются горючими.

Билет 37

Лакокрасочные материалы.

Классификация, состав, свойства

Лакокрасочные материалы (ЛКМ) — это композиционные составы, наносимые на отделываемые поверхности в жидком или порошкообразном виде равномерными тонкими слоями и образующие после высыхания и отвердения пленку, имеющую прочное сцепление с основанием. Сформировавшуюся плёнку называют лакокрасочным покрытием, свойством которого является защита поверхности от внешних воздействий (воды, коррозии, температур, вредных веществ), придание ей определённого вида, цвета и фактуры.

ЛКМ подразделяются на следующие группы:

  • краска

  • эмаль

  • лак

  • грунтовка

  • шпатлёвка

  • антисептик

Билет 38

Пигменты для лакокрасочных материалов

Требование к ним

Билет 39

Водные красочные составыы

Водно-известковые и водно-цементные красочные составы. В качестве связующего в строительных красках этого вида применяют водно-известковые или водно-цементные суспензии. Известковую суспензию приготовляют из известкового теста или из свежепогашенной тонкомолотой извести-кипелки. В состав суспензии вводят щелочестойкие пигменты, а также поваренную соль или хлористый кальций с целью предотвращения быстрого высыхания, так как пленки отвердевают главным образом вследствие карбонизации [Са(ОН)2+С02== = СаС03+Н20], для протекания которой требуется некоторое количество влаги. Качество покрытий улучшается с введением в известь в процессе гашения небольшого количества олифы, так как образующиеся при этом кальциевые мыла повышают водостойкость затвердевших пленок. Известковые краски применяют для окраски кирпичных стен и штукатурок.

Маслянные краски

Ма́сляные кра́ски — ряд лакокрасочных материалов, представляющих из себя суспензии неорганических пигментов и наполнителей в олифах (чаще всего комбинированной или синтетической либо на основеалкидных смол), иногда с добавкой вспомогательных веществ. Применяются для окраски деревянных, металлических и других поверхностей, в зависимости от вида краски.

Билет 40

Пути экономии строительных материалов

Пути экономии материальных ресурсов - основные методы и мероприятия, проведение которых обеспечивает снижение расхода сырья, материалов, топлива и электроэнергии на единицу изделия или единицу работы. Пути экономии принято делить на производственно-технические и организационно-экономические. Первые в свою очередь делятся на конструктивные и технологические. Конструктивные мероприятия направлены на изменение конструкций машин и изделий в целях уменьшения их удельного веса при сохранении или даже улучшении всех их эксплуатационных данных.

Основными технологическими путями экономии материальных ресурсов являются: внедрение новой .техники и прогрессивной технологии, в частности обеспечивающих получение заготовок и поковок, максимально приближающихся по конфигурации и размерам к изготовляемым деталям; широкое развитие химии и внедрение химических методов переработки, обеспечивающих создание новых прогрессивных материалов, комплексное использование сырья и материалов, интенсификацию технологических процессов; улучшение подготовки сырья и материалов к производственному потреблению; организация рационального раскроя площади исходного материала; применение материалов мерных и кратных размерам заготовок; повышение всей культуры производства, и в частности ликвидация брака продукции, обеспечение должной сохранности материальных ресурсов; улучшение организации производства и углубление специализации; систематический сбор и утилизация отходов производства, а также отходов индивидуального потребления (банок, стеклянной посуды, бумажной макулатуры, тряпья и т. д.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]