Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tekh-mekh.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
10.63 Mб
Скачать

18.Угловая скорость.19Угловое ускорение

Угловая скорость

Угловая скорость и угловое ускорение

     

     Скорость вращения тела, определяющаяся приращением угла поворота тела за промежуток времени называется угловой скоростью.

   

     Быстрота изменения угла φ – это угловая скорость:

   ω=dφ/dt=φ', рад/с; с-1. (2.3)

     Приняв k  как единичный орт положительного направления оси, получим

     Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω  и k  совпадают, при отрицательном – противоположны.

    Изменение угловой скорости характеризуется угловым ускорением:

     Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном - противоположны.

    Для некоторых частных случаев вращательного движения могут быть использованы формулы:

- равномерное вращение ( ω - const)

  φ=φ0+ωt;                                 (2.5)

- равнопеременное вращение ( ε - const)

                          ω=ω0+εt; φ=φ00t+εt2/2.         (2.6)

    В технике угловая скорость часто задается в оборотах в минуту n[об/мин]. Один оборот – это   радиан:

                                        ω=n2π/60=nπ/30 рад/с; с-1.

Углова́я ско́рость — векторная величина, являющаяся 0%90%D0%BA%D1%81%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80"псевдовектором (аксиальным вектором) и характеризующая скорость 0%92%D1%80%D0%B0%D1%89%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5"вращения 0%9C%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%BA%D0%B0"материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен 0%A3%D0%B3%D0%BE%D0%BB"углу поворота точки вокруг центра вращения в единицу времени:

,

Углово́е ускоре́ние — 0%9F%D1%81%D0%B5%D0%B2%D0%B4%D0%BE%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80"псевдовекторная 0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0"физическая величина, характеризующая быстроту изменения 0%A3%D0%B3%D0%BB%D0%BE%D0%B2%D0%B0%D1%8F_%D1%81%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C"угловой скорости 0%9C%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%BA%D0%B0"материальной точки.

При 0%92%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D0%B5"вращении точки вокруг неподвижной 0%9E%D1%81%D1%8C_%D0%B2%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D1%8F"оси, угловое ускорение по модулю равно0%A3%D0%B3%D0%BB%D0%BE%D0%B2%D0%BE%D0%B5_%D1%83%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5"[1]:

Вектор углового ускорения   направлен вдоль оси вращения (в сторону   при ускоренном вращении и противоположно   — при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости   по времени0%A3%D0%B3%D0%BB%D0%BE%D0%B2%D0%BE%D0%B5_%D1%83%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5"[2], то есть

,

и направлен по касательной к 0%93%D0%BE%D0%B4%D0%BE%D0%B3%D1%80%D0%B0%D1%84"годографу вектора   в соответствующей его точке.

Существует связь между 0%A2%D0%B0%D0%BD%D0%B3%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%83%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5"тангенциальным и угловым ускорениями:

,

где R — 0%A0%D0%B0%D0%B4%D0%B8%D1%83%D1%81_%D0%BA%D1%80%D0%B8%D0%B2%D0%B8%D0%B7%D0%BD%D1%8B"радиус кривизны 0%A2%D1%80%D0%B0%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9_%D1%82%D0%BE%D1%87%D0%BA%D0%B8"траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени.

Угловое ускорение измеряется в рад/с².

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]