
- •Связи и их реакции.
- •Геометрический способ нахождения равнодействующей плоской системы сходящихся сил
- •Аналитический способ нахождения равнодействующей плоской системы сходящихся сил
- •Пара сил. Момент пары сил
- •Момент силы относительно точки
- •Плоская система произвольно-расположенных сил. Условия равновесия
- •Формы уравнений равновесия плоской системы произвольно расположенных сил
- •Пространственная система сходящихся сил
- •Пространственная система произвольно расположенных сил
- •11.Момент силы относительной оси
- •12.Условия Пространственной системы произвольно расположенных сил
- •13.Центр тяжести. Способы определение центра тяжести. Координаты центра тяжести плоского тела и составленных сечений.
- •14.Скорость точки
- •15.Ускорение точки
- •16.Поступательные движения твердого тела
- •17.Вращательное движение твердого. Частные Случаи вращательного движения твердого тела.
- •18.Угловая скорость.19Угловое ускорение
- •20.Основные формулы равномерного и равномерно-переменного движения
- •Графики прямолинейного равномерного движения.
- •21.Сложные движения твердого тела. Плоскопараллельное движение. Мгновенные центра скоростей.
- •2.2. Описание движений твердого тела
- •2.3 Плоскопараллельное движение твердого тела
- •23.Аксиомы динамики
- •24.Методы кинематики
- •25.Работа при постоянной силе при прямолинейном движении, при вращательном движении. Работы силы тяжести
- •4.3 Работа постоянной силы на прямолинейном перемещении
- •26.Мощность.Кпд. А. Трение скольжение b.Трение Качение
- •27.Общие теоремы динамик
- •28.Основные уравнения динамики для вращательного движения твердого тела
- •29.Основные гипотезы и допущения сопротивлении материалов
- •30.Методи сечения
- •31.Внутненние силы в поперечном сечении
- •32.Напряжение полное, нормальное, касательное.
- •33.Растяжение, сжатие. Продольные силы и их эпюры.
- •Продольное сжатие
- •34.Нормальные напряжения и их эпюры
- •35.Условия прочности при растяжении, сжатии. Допускаемые напряжения.
- •36.Закон Гука при растяжении, сжатии.
- •37.Срез и смятие. Основные допущения на срез и смятия.
- •38.Расчет на срез и смятие
- •39.Кручение. Деформация при кручении
- •40.Правила построение эпюр крутящий момент.
- •41.Напряжение при кручении
- •42.Расчет на прочность и сжатие при кручении
- •43.Осевые моменты энергии. Моменты инерции некоторых Простейших сечений
- •44.Полярный момент инерции. Полярный момент инерции для круга, для кольца.
- •45.Изгиб. Основные понятия
- •46.Поперечные силы. Правила построение эпюр поперечных сил.
- •47.Изгибающие моменты. Правила построение эпюр изгибающий момент.
- •3.5. Построение эпюр изгибающих моментов и поперечных сил.
- •48.Диффиринциальная зависимость интенсивностью распространению нагрузки, поперечной силой и изгибающим моментом.
- •49. Расчет на прочность при изгибе.
- •50.Гипотизы прочности при изгибе.
- •51.Критическая сила для сжатие стержней
- •2.6.1. Критическая сила
- •52.Условия устойчивости для сжатых стержней
- •53.Основные критерии работоспособности и расчете деталей машин.
- •54.Основные кинематические и силовые соотношения в механических передачах.
- •55.Фрикционне передачи. Их достоинство и недостатки. Область применение, классификации.
- •Раздел 13. Фрикционные передачи.
- •Передача с катками клинчатой формы
- •56.Зубчатые передачи. Их достоинство и недостатки. Область применение, классификации.
- •57.Виды разрушений зубьев
- •58.Материялы зубчатых колес
- •4.3.1 Материалы, применяемые для изготовления зубчатых колес
- •59.Сылы, действующие в зацеплении зубчатых передач
- •1.6.1. Основы теории зацепления
- •60.Расчет прямозубых цилиндрических колес на усталость.
- •61.Передача винт-гайка. Достоинство и недостатки. Область применения.
- •5.1 Назначение и область применения передачи винт-гайка
- •5.2 Достоинства передачи винт-гайка
- •5.3 Недостатки передачи винт-гайка
- •62.Червячная передача. Достоинство и недостатки. Область применения.
- •63.Ременная передача. Достоинство и недостатки. Область применения, классификация.
- •64.Силы действующих в ременных передачах. Скольжение ремня
- •§ 17.4. Скольжение ремня. Передаточное число
- •65.Цепные передачи. Достоинства и недостатки. Область применения.
- •8.1 Назначение и область применения цепных передач
- •8.2 Достоинства цепных передач
- •8.3 Недостатки цепных передач
- •66.Силы действующие в цепных передачах.
- •67.Оси и валы. Расчет волов и осей на прочность. Валы и оси. Основы расчета на прочность, жесткость и выносливость
- •68.Подшипники скольжения. Их достоинства и недостатки. Область применения.
- •69.Подшипники качения. Их достоинства и недостатки. Область применения.
- •70.Класификация подшипников качения
- •71.Классификация муфт
- •72.Неразъемные соединения. Общие сведения. Общие сведения сварных соединений
- •Преимущества сварного соединения
- •Недостатки сварного соединения
- •Виды сварных соединений
- •Геометрия сварного шва
- •Критерии работоспособности сварных соединений
- •73.Расчет на прочность сварных соединений.
- •74.Резьбовые соединения
14.Скорость точки
Скорость точки
1.2 Скорость точки
Рассмотрим перемещение точки за малый промежуток времени Δt:
тогда
средняя скорость точки за промежуток времени Dt . Скорость точки в данный момент времени
Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения. |
15.Ускорение точки
Ускорение точки
1.3 Ускорение точки
Среднее ускорение
характеризует изменение вектора скорости за малый промежуток времени Δt . Ускорение точки в данный момент времени
Ускорение точки – это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени. Ускорение характеризует изменение вектора скорости по величине и направлению и направлено в сторону вогнутости траектории. |
16.Поступательные движения твердого тела
Поступательное движение твердого тела
Поступательное движение твердого тела – это движение, при котором любая прямая, связанная с телом, при его движении остается параллельной своему начальному положению. Примеры поступательного движения: движение педалей велосипеда относительно его рамы, движение поршней в цилиндрах двигателя внутреннего сгорания относительно цилиндров, движение кабин колеса обозрения относительно Земли (рисунок 1.1) и т.д.
Рис. 1.1
Теорема. При поступательном движении твердого тела траектории, скорости и ускорения точек тела одинаковы. Доказательство. Если выбрать две точки твердого тела А и В (рисунок 1.2), то радиусы-векторы этих точек связаны соотношением
Траектория точки А – это кривая, которая задается функцией rA(t), а траектория точкиB – это кривая, которая задается функцией rB(t). Траектория точки B получается переносом траектории точки A в пространстве вдоль вектора AB, который не меняет своей величины и направления во времени (AB = const). Следовательно, траектории всех точек твердого тела одинаковы. Продифференцируем по времени выражение
Получаем
Рис. 1.2
Продифференцируем по времени скорость и получим выражение aB = aA. Следовательно, скорости и ускорения всех точек твердого тела одинаковы. Для задания поступательного движения твердого тела достаточно задать движение одной из его точек:
|
17.Вращательное движение твердого. Частные Случаи вращательного движения твердого тела.
ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА
9.1.
Поступательное движение
Поступательное движение - это такое движение твердого тела, при котором любая прямая соединяющая две точки тела, движется, оставаясь параллельной самой себе.
Поступательное движение нельзя смешивать с прямолинейным, так как при поступательном движении траектория может быть какой угодно.
Свойства поступательного движения характеризует следующая теорема:
Все точки твердого тела, движущегося поступательно, описывают одинаковые траектории и в каждый момент времени имеют одинаковые по модулю и направлению скорости и ускорения.
Пусть
дано твердое тело совершающее
поступательное движение относительно
системы отсчета Oxyz (рис.
49
).
Выберем
произвольные точки A и В характеризующиеся
радиус-векторами
в
момент времени t.
Проведем
вектор
,
тогда
Так как тело движется поступательно, то траекторию точки А получим из траектории точки В параллельным смещением всех точек на отрезок .
Продифференцируем уравнение (9.1.1):
Взяв производную от (9.1.3), получаем
т.е. скорости и ускорения всех точек твердого тела одинаковы.
9.2.
Вращательное движение твердого тела
Вращательным называют такое движение твердого тела, при котором две какие-нибудь точки принадлежащие телу, остаются во все время движения неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все точки лежащие на оси так же неподвижны.
Чтобы определить положение вращающегося тела, введем две плоскости, проходящие через ось вращения (рис. 50 ) А - плоскость неподвижная; В - плоскость связанная с телом и вращающаяся с ним; DE - ось вращения, совпадающая с осью z.
Теперь
в любой момент времени положение тела
будет определяться углом
между
плоскостями А и В или углом поворота
тела, положительным, если вращение
происходит против часовой стрелки, и
отрицательным в противном случае. Закон
вращательного движения
Угол поворота обычно измеряют в радианах.
Основными
кинематическими характеристиками
вращательного движения твердого тела
являются его угловая скорость
и
угловое ускорение
.
Если
за промежуток времени
тело
совершает поворот на угол
,
то средняя угловая скорость будет
численно равна
Угловой
скоростью тела
в данный момент t называется величина,
к которой стремится средняя угловая
скорость
,
если
стремится
к нулю.
Угловая скорость твердого тела является первой производной от угла поворота по времени.
Размерность:
[радиан/время]; [1/время]; [1/сек =
].
Угловую
скорость можно изображать вектором.
Вектор угловой скорости
направляют
по оси вращения в ту сторону, откуда
вращение видно против хода часовой
стрелки.
Если угловая скорость не является постоянной величиной, то вводят еще одну характеристику вращения - угловое ускорение.
Угловое ускорение характеризует изменение угловой скорости тела с течением времени.
Если
за промежуток времени
угловая
скорость получает приращение
,
то среднее угловое ускорение равно