
- •Связи и их реакции.
- •Геометрический способ нахождения равнодействующей плоской системы сходящихся сил
- •Аналитический способ нахождения равнодействующей плоской системы сходящихся сил
- •Пара сил. Момент пары сил
- •Момент силы относительно точки
- •Плоская система произвольно-расположенных сил. Условия равновесия
- •Формы уравнений равновесия плоской системы произвольно расположенных сил
- •Пространственная система сходящихся сил
- •Пространственная система произвольно расположенных сил
- •11.Момент силы относительной оси
- •12.Условия Пространственной системы произвольно расположенных сил
- •13.Центр тяжести. Способы определение центра тяжести. Координаты центра тяжести плоского тела и составленных сечений.
- •14.Скорость точки
- •15.Ускорение точки
- •16.Поступательные движения твердого тела
- •17.Вращательное движение твердого. Частные Случаи вращательного движения твердого тела.
- •18.Угловая скорость.19Угловое ускорение
- •20.Основные формулы равномерного и равномерно-переменного движения
- •Графики прямолинейного равномерного движения.
- •21.Сложные движения твердого тела. Плоскопараллельное движение. Мгновенные центра скоростей.
- •2.2. Описание движений твердого тела
- •2.3 Плоскопараллельное движение твердого тела
- •23.Аксиомы динамики
- •24.Методы кинематики
- •25.Работа при постоянной силе при прямолинейном движении, при вращательном движении. Работы силы тяжести
- •4.3 Работа постоянной силы на прямолинейном перемещении
- •26.Мощность.Кпд. А. Трение скольжение b.Трение Качение
- •27.Общие теоремы динамик
- •28.Основные уравнения динамики для вращательного движения твердого тела
- •29.Основные гипотезы и допущения сопротивлении материалов
- •30.Методи сечения
- •31.Внутненние силы в поперечном сечении
- •32.Напряжение полное, нормальное, касательное.
- •33.Растяжение, сжатие. Продольные силы и их эпюры.
- •Продольное сжатие
- •34.Нормальные напряжения и их эпюры
- •35.Условия прочности при растяжении, сжатии. Допускаемые напряжения.
- •36.Закон Гука при растяжении, сжатии.
- •37.Срез и смятие. Основные допущения на срез и смятия.
- •38.Расчет на срез и смятие
- •39.Кручение. Деформация при кручении
- •40.Правила построение эпюр крутящий момент.
- •41.Напряжение при кручении
- •42.Расчет на прочность и сжатие при кручении
- •43.Осевые моменты энергии. Моменты инерции некоторых Простейших сечений
- •44.Полярный момент инерции. Полярный момент инерции для круга, для кольца.
- •45.Изгиб. Основные понятия
- •46.Поперечные силы. Правила построение эпюр поперечных сил.
- •47.Изгибающие моменты. Правила построение эпюр изгибающий момент.
- •3.5. Построение эпюр изгибающих моментов и поперечных сил.
- •48.Диффиринциальная зависимость интенсивностью распространению нагрузки, поперечной силой и изгибающим моментом.
- •49. Расчет на прочность при изгибе.
- •50.Гипотизы прочности при изгибе.
- •51.Критическая сила для сжатие стержней
- •2.6.1. Критическая сила
- •52.Условия устойчивости для сжатых стержней
- •53.Основные критерии работоспособности и расчете деталей машин.
- •54.Основные кинематические и силовые соотношения в механических передачах.
- •55.Фрикционне передачи. Их достоинство и недостатки. Область применение, классификации.
- •Раздел 13. Фрикционные передачи.
- •Передача с катками клинчатой формы
- •56.Зубчатые передачи. Их достоинство и недостатки. Область применение, классификации.
- •57.Виды разрушений зубьев
- •58.Материялы зубчатых колес
- •4.3.1 Материалы, применяемые для изготовления зубчатых колес
- •59.Сылы, действующие в зацеплении зубчатых передач
- •1.6.1. Основы теории зацепления
- •60.Расчет прямозубых цилиндрических колес на усталость.
- •61.Передача винт-гайка. Достоинство и недостатки. Область применения.
- •5.1 Назначение и область применения передачи винт-гайка
- •5.2 Достоинства передачи винт-гайка
- •5.3 Недостатки передачи винт-гайка
- •62.Червячная передача. Достоинство и недостатки. Область применения.
- •63.Ременная передача. Достоинство и недостатки. Область применения, классификация.
- •64.Силы действующих в ременных передачах. Скольжение ремня
- •§ 17.4. Скольжение ремня. Передаточное число
- •65.Цепные передачи. Достоинства и недостатки. Область применения.
- •8.1 Назначение и область применения цепных передач
- •8.2 Достоинства цепных передач
- •8.3 Недостатки цепных передач
- •66.Силы действующие в цепных передачах.
- •67.Оси и валы. Расчет волов и осей на прочность. Валы и оси. Основы расчета на прочность, жесткость и выносливость
- •68.Подшипники скольжения. Их достоинства и недостатки. Область применения.
- •69.Подшипники качения. Их достоинства и недостатки. Область применения.
- •70.Класификация подшипников качения
- •71.Классификация муфт
- •72.Неразъемные соединения. Общие сведения. Общие сведения сварных соединений
- •Преимущества сварного соединения
- •Недостатки сварного соединения
- •Виды сварных соединений
- •Геометрия сварного шва
- •Критерии работоспособности сварных соединений
- •73.Расчет на прочность сварных соединений.
- •74.Резьбовые соединения
12.Условия Пространственной системы произвольно расположенных сил
Произвольной пространственной системой сил называется система сил, линии действия которых не лежат в одной плоскости.
Отсюда вытекает условие равновесия произвольной пространственной системы сил.
В геометрической форме: для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы главный вектор и главный момент системы равнялись нулю
R = 0, Mo = 0.
В аналитической форме: для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на три координатные оси и суммы моментов всех сил относительно этих осей были равны нулю
ΣFkx = 0, ΣFky = 0, ΣFkz = 0,
Mx(Fk) = 0, My(Fk) = 0, Mz(Fk) = 0.
13.Центр тяжести. Способы определение центра тяжести. Координаты центра тяжести плоского тела и составленных сечений.
Центр тяжести
Центр тяжести тела - точка приложения силы тяжести (равнодействующей гравитационных сил).
Центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс.
Определение центра тяжести
Определение центра тяжести произвольного тела путем последовательного сложения сил, действующих на отдельные его части,— трудная задача; она облегчается только для тел сравнительно простой формы.
Пусть тело состоит только из двух грузов с массами m1 и m2, соединенных стержнем (рис. 126). Если масса стержня мала по сравнению с массами m1 и m2, то ею можно пренебречь. На каждую из масс действует сила тяжести:
P1=m1g, Р2=m2g;
обе они направлены вертикально вниз, т. е. параллельно друг другу. Как мы уже знаем, равнодействующая двух параллельных сил приложена в точке О, которая определяется из условия
Следовательно, центр тяжести делит расстояние между двумя массами в отношении обратном отношению масс. Если это тело подвесить в точке О, оно останется в равновесии.
Определение координат центра тяжести
Способы определения координат центра тяжести Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:
1 Аналитический (путем интегрирования).
2 Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.
3 Экспериментальный (метод подвешивания тела). 4 Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S1 и S2 (S = S1 + S2). Центры тяжести этих фигур находятся в точках C1(x1, y1) и C2(x2, y2). Тогда координаты центра тяжести тела равны
Рисунок 1.8
5 Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):
Рисунок 1.9 |
Центр тяжести однородных плоских тел
(плоских фигур)
Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V = Ah, где А — площадь фигуры, h — ее высота.
Тогда после подстановки в записанные выше формулы получим:
;
;
,
где Ак — площадь части сечения; хк, ук — координаты ЦТ частей сечения.
Выражение
называют
статическим моментом площади (Sy.).
Координаты центра тяжести сечения можно выразить через статический момент:
;
;
;
.
Оси, проходящие через центр тяжести, называются центральными осями. Статический момент относительно центральной оси равен нулю.
Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии.
Центр тяжести стержня находится на середине высоты. Положения центров тяжести простых геометрических фигур могут быть рассчитаны по известным формулам (рис. 8.3: а) — круг; б) — квадрат, прямоугольник; в) — треугольник; г) — полукруг).