
- •Связи и их реакции.
- •Геометрический способ нахождения равнодействующей плоской системы сходящихся сил
- •Аналитический способ нахождения равнодействующей плоской системы сходящихся сил
- •Пара сил. Момент пары сил
- •Момент силы относительно точки
- •Плоская система произвольно-расположенных сил. Условия равновесия
- •Формы уравнений равновесия плоской системы произвольно расположенных сил
- •Пространственная система сходящихся сил
- •Пространственная система произвольно расположенных сил
- •11.Момент силы относительной оси
- •12.Условия Пространственной системы произвольно расположенных сил
- •13.Центр тяжести. Способы определение центра тяжести. Координаты центра тяжести плоского тела и составленных сечений.
- •14.Скорость точки
- •15.Ускорение точки
- •16.Поступательные движения твердого тела
- •17.Вращательное движение твердого. Частные Случаи вращательного движения твердого тела.
- •18.Угловая скорость.19Угловое ускорение
- •20.Основные формулы равномерного и равномерно-переменного движения
- •Графики прямолинейного равномерного движения.
- •21.Сложные движения твердого тела. Плоскопараллельное движение. Мгновенные центра скоростей.
- •2.2. Описание движений твердого тела
- •2.3 Плоскопараллельное движение твердого тела
- •23.Аксиомы динамики
- •24.Методы кинематики
- •25.Работа при постоянной силе при прямолинейном движении, при вращательном движении. Работы силы тяжести
- •4.3 Работа постоянной силы на прямолинейном перемещении
- •26.Мощность.Кпд. А. Трение скольжение b.Трение Качение
- •27.Общие теоремы динамик
- •28.Основные уравнения динамики для вращательного движения твердого тела
- •29.Основные гипотезы и допущения сопротивлении материалов
- •30.Методи сечения
- •31.Внутненние силы в поперечном сечении
- •32.Напряжение полное, нормальное, касательное.
- •33.Растяжение, сжатие. Продольные силы и их эпюры.
- •Продольное сжатие
- •34.Нормальные напряжения и их эпюры
- •35.Условия прочности при растяжении, сжатии. Допускаемые напряжения.
- •36.Закон Гука при растяжении, сжатии.
- •37.Срез и смятие. Основные допущения на срез и смятия.
- •38.Расчет на срез и смятие
- •39.Кручение. Деформация при кручении
- •40.Правила построение эпюр крутящий момент.
- •41.Напряжение при кручении
- •42.Расчет на прочность и сжатие при кручении
- •43.Осевые моменты энергии. Моменты инерции некоторых Простейших сечений
- •44.Полярный момент инерции. Полярный момент инерции для круга, для кольца.
- •45.Изгиб. Основные понятия
- •46.Поперечные силы. Правила построение эпюр поперечных сил.
- •47.Изгибающие моменты. Правила построение эпюр изгибающий момент.
- •3.5. Построение эпюр изгибающих моментов и поперечных сил.
- •48.Диффиринциальная зависимость интенсивностью распространению нагрузки, поперечной силой и изгибающим моментом.
- •49. Расчет на прочность при изгибе.
- •50.Гипотизы прочности при изгибе.
- •51.Критическая сила для сжатие стержней
- •2.6.1. Критическая сила
- •52.Условия устойчивости для сжатых стержней
- •53.Основные критерии работоспособности и расчете деталей машин.
- •54.Основные кинематические и силовые соотношения в механических передачах.
- •55.Фрикционне передачи. Их достоинство и недостатки. Область применение, классификации.
- •Раздел 13. Фрикционные передачи.
- •Передача с катками клинчатой формы
- •56.Зубчатые передачи. Их достоинство и недостатки. Область применение, классификации.
- •57.Виды разрушений зубьев
- •58.Материялы зубчатых колес
- •4.3.1 Материалы, применяемые для изготовления зубчатых колес
- •59.Сылы, действующие в зацеплении зубчатых передач
- •1.6.1. Основы теории зацепления
- •60.Расчет прямозубых цилиндрических колес на усталость.
- •61.Передача винт-гайка. Достоинство и недостатки. Область применения.
- •5.1 Назначение и область применения передачи винт-гайка
- •5.2 Достоинства передачи винт-гайка
- •5.3 Недостатки передачи винт-гайка
- •62.Червячная передача. Достоинство и недостатки. Область применения.
- •63.Ременная передача. Достоинство и недостатки. Область применения, классификация.
- •64.Силы действующих в ременных передачах. Скольжение ремня
- •§ 17.4. Скольжение ремня. Передаточное число
- •65.Цепные передачи. Достоинства и недостатки. Область применения.
- •8.1 Назначение и область применения цепных передач
- •8.2 Достоинства цепных передач
- •8.3 Недостатки цепных передач
- •66.Силы действующие в цепных передачах.
- •67.Оси и валы. Расчет волов и осей на прочность. Валы и оси. Основы расчета на прочность, жесткость и выносливость
- •68.Подшипники скольжения. Их достоинства и недостатки. Область применения.
- •69.Подшипники качения. Их достоинства и недостатки. Область применения.
- •70.Класификация подшипников качения
- •71.Классификация муфт
- •72.Неразъемные соединения. Общие сведения. Общие сведения сварных соединений
- •Преимущества сварного соединения
- •Недостатки сварного соединения
- •Виды сварных соединений
- •Геометрия сварного шва
- •Критерии работоспособности сварных соединений
- •73.Расчет на прочность сварных соединений.
- •74.Резьбовые соединения
53.Основные критерии работоспособности и расчете деталей машин.
Основные критерии работоспособности деталей машин |
Критерий – это "мерило значения чего-либо", граница допустимости решения, ограничение целевой функции. Важнейшими критериями работоспособности деталей машин являются прочность, жесткость, износостойкость, теплостойкость, вибрационная устойчивость. При конструировании работоспособность деталей обеспечивают выбором материала и расчетом размеров по основному критерию. Выбор критерия обусловлен характером воздействия нагрузки, среды и вызываемым видом отказа. В настоящее время самым распространенным критерием работоспособности является прочность. Прочность – это способность детали сопротивляться разрушению или потере формы под действием приложенных к детали нагрузок. Этому критерию должны удовлетворять все детали и узлы. На основании принципа независимости действия сил любое сложное напряженное состояние можно разложить на простые виды: растяжение, сжатие, изгиб, сдвиг(кручение), срез – это внутренние напряжения в сечениях деталей. На поверхности соприкосновения (контакта) двух деталей под нагрузкой возникаютповерхностные напряжения. Если размеры площадок контакта одного порядка с другими размерами деталей, то говорят о напряжениях смятия σ см . Если хотя бы один из размеров площадки контакта существенно мал по сравнению с другими размерами, то возникают контактные напряжения. Исследованием контактных напряжений занимался Генрих Герц (Hertz). В его честь эти напряжения обозначают с индексом "Н": σ H, σ Н. В "Теории упругости" различают две контактные задачи: а) с первоначальным (до приложения нагрузки) контактом по линии, например, сжатие двух цилиндров по общей образующей (рис. 1.1); Вследствие упругих деформаций под действием сжимающей нагрузки w = F / l линия контакта переходит в узкую полоску шириной 2а (2а < < σ), на которой возникают контактные напряжения σ Н, изменяющиеся по эллиптическому закону. Формула Герца для первоначального контакта по линии: σ Н = ZE (w / ρ пр)1/2 ≤ [σ H] , (1.1) где w = F / l – удельная (на 1 мм длины линии контакта) линейная нагрузка, Н/мм; ZE – коэффициент влияния механических свойств материалов деталей; 1/ρ пр = 1/ρ 1 ± 1/ρ 2 – приведенная кривизна поверхностей контакта: ρ 1 и ρ 2 – радиусы кривизны. Знак плюс – контакт двух выпуклых тел (рис. 1.1), знак минус – контакт выпуклого ρ 1 и вогнутого ρ 2 тел.
а < < ρ Рис. 1.1 Рис. 1.2
б) с первоначальным контактом в точке, например, сжатие шара на плоскости (рис. 1.2). Числовые значения σ Н намного превышают другие виды напряжений и даже пределы текучести σ Т и прочности σ В. Например, в подшипниках качения σНmax = 4200 МПа, а σ Т= 1700 МПа и σ В = 1900 МПа у стали ШХ15 для них. Кроме σ Н , в зоне контакта возникают также касательные напряжения σНmax = 0,3σНmax в точке, отстоящей от поверхности контакта на глубину 0,78а. Отсутствие мгновенного разрушения объясняется тем, что в зоне действия σН и σНматериал находится в условиях всестороннего объемного сжатия. Рассчитав величины отдельных составляющих напряжений, по принципу суперпозиции(наложения) с учетом векторного характера, можно определить суммарное илиэквивалентное напряжение σЕ. Например, для совместных напряжений изгиба σ и кручения τ: σЕ = (σ2 + 3τ2) 1/2 ≤ [σ]. По критерию [?] делают оценку прочности изделия. |