
- •Связи и их реакции.
- •Геометрический способ нахождения равнодействующей плоской системы сходящихся сил
- •Аналитический способ нахождения равнодействующей плоской системы сходящихся сил
- •Пара сил. Момент пары сил
- •Момент силы относительно точки
- •Плоская система произвольно-расположенных сил. Условия равновесия
- •Формы уравнений равновесия плоской системы произвольно расположенных сил
- •Пространственная система сходящихся сил
- •Пространственная система произвольно расположенных сил
- •11.Момент силы относительной оси
- •12.Условия Пространственной системы произвольно расположенных сил
- •13.Центр тяжести. Способы определение центра тяжести. Координаты центра тяжести плоского тела и составленных сечений.
- •14.Скорость точки
- •15.Ускорение точки
- •16.Поступательные движения твердого тела
- •17.Вращательное движение твердого. Частные Случаи вращательного движения твердого тела.
- •18.Угловая скорость.19Угловое ускорение
- •20.Основные формулы равномерного и равномерно-переменного движения
- •Графики прямолинейного равномерного движения.
- •21.Сложные движения твердого тела. Плоскопараллельное движение. Мгновенные центра скоростей.
- •2.2. Описание движений твердого тела
- •2.3 Плоскопараллельное движение твердого тела
- •23.Аксиомы динамики
- •24.Методы кинематики
- •25.Работа при постоянной силе при прямолинейном движении, при вращательном движении. Работы силы тяжести
- •4.3 Работа постоянной силы на прямолинейном перемещении
- •26.Мощность.Кпд. А. Трение скольжение b.Трение Качение
- •27.Общие теоремы динамик
- •28.Основные уравнения динамики для вращательного движения твердого тела
- •29.Основные гипотезы и допущения сопротивлении материалов
- •30.Методи сечения
- •31.Внутненние силы в поперечном сечении
- •32.Напряжение полное, нормальное, касательное.
- •33.Растяжение, сжатие. Продольные силы и их эпюры.
- •Продольное сжатие
- •34.Нормальные напряжения и их эпюры
- •35.Условия прочности при растяжении, сжатии. Допускаемые напряжения.
- •36.Закон Гука при растяжении, сжатии.
- •37.Срез и смятие. Основные допущения на срез и смятия.
- •38.Расчет на срез и смятие
- •39.Кручение. Деформация при кручении
- •40.Правила построение эпюр крутящий момент.
- •41.Напряжение при кручении
- •42.Расчет на прочность и сжатие при кручении
- •43.Осевые моменты энергии. Моменты инерции некоторых Простейших сечений
- •44.Полярный момент инерции. Полярный момент инерции для круга, для кольца.
- •45.Изгиб. Основные понятия
- •46.Поперечные силы. Правила построение эпюр поперечных сил.
- •47.Изгибающие моменты. Правила построение эпюр изгибающий момент.
- •3.5. Построение эпюр изгибающих моментов и поперечных сил.
- •48.Диффиринциальная зависимость интенсивностью распространению нагрузки, поперечной силой и изгибающим моментом.
- •49. Расчет на прочность при изгибе.
- •50.Гипотизы прочности при изгибе.
- •51.Критическая сила для сжатие стержней
- •2.6.1. Критическая сила
- •52.Условия устойчивости для сжатых стержней
- •53.Основные критерии работоспособности и расчете деталей машин.
- •54.Основные кинематические и силовые соотношения в механических передачах.
- •55.Фрикционне передачи. Их достоинство и недостатки. Область применение, классификации.
- •Раздел 13. Фрикционные передачи.
- •Передача с катками клинчатой формы
- •56.Зубчатые передачи. Их достоинство и недостатки. Область применение, классификации.
- •57.Виды разрушений зубьев
- •58.Материялы зубчатых колес
- •4.3.1 Материалы, применяемые для изготовления зубчатых колес
- •59.Сылы, действующие в зацеплении зубчатых передач
- •1.6.1. Основы теории зацепления
- •60.Расчет прямозубых цилиндрических колес на усталость.
- •61.Передача винт-гайка. Достоинство и недостатки. Область применения.
- •5.1 Назначение и область применения передачи винт-гайка
- •5.2 Достоинства передачи винт-гайка
- •5.3 Недостатки передачи винт-гайка
- •62.Червячная передача. Достоинство и недостатки. Область применения.
- •63.Ременная передача. Достоинство и недостатки. Область применения, классификация.
- •64.Силы действующих в ременных передачах. Скольжение ремня
- •§ 17.4. Скольжение ремня. Передаточное число
- •65.Цепные передачи. Достоинства и недостатки. Область применения.
- •8.1 Назначение и область применения цепных передач
- •8.2 Достоинства цепных передач
- •8.3 Недостатки цепных передач
- •66.Силы действующие в цепных передачах.
- •67.Оси и валы. Расчет волов и осей на прочность. Валы и оси. Основы расчета на прочность, жесткость и выносливость
- •68.Подшипники скольжения. Их достоинства и недостатки. Область применения.
- •69.Подшипники качения. Их достоинства и недостатки. Область применения.
- •70.Класификация подшипников качения
- •71.Классификация муфт
- •72.Неразъемные соединения. Общие сведения. Общие сведения сварных соединений
- •Преимущества сварного соединения
- •Недостатки сварного соединения
- •Виды сварных соединений
- •Геометрия сварного шва
- •Критерии работоспособности сварных соединений
- •73.Расчет на прочность сварных соединений.
- •74.Резьбовые соединения
40.Правила построение эпюр крутящий момент.
Построение эпюр крутящих моментов.
Стержень испытывает кручение, если в его поперечных сечениях возникают крутящие моменты, т.е. моменты, лежащие в плоскости сечения. Обычно эти крутящие моменты Тк возникают под действием внешних моментов Т (рис. 2.1). Внешние моменты передаются на вал, как правило, в местах посадки на него шкивов, зубчатых колес и т.п.
Однако
и поперечная нагрузка, смещенная
относительно оси стержня, вызывает
крутящие моменты (рис. 2.2), но в указанном
слечае
в
поперечных сечениях наряду с крутящими
моментами возникают и другие внутренние
усилия - поперечные силы и изгибающие
моменты.
Вращающиеся и работающие на кручение стержни называют валами.
Вместо аксонометрического изображения будем применять главным образом плоское, как более простое. Внешние скручивающие моменты и внутренние крутящие моменты будем изображать в виде линии с двумя кружочками. В одном из них будем ставить точку, обозначающую начало стрелки (на нас), в другом - крестик, обозначающий конец стрелки, направленный от нас (рис. 2.3).
Для
определения крутящих моментов
Тк возникающих
в сечениях вала под действием внешних
скручивающих моментов или поперечной
нагрузки, будем применять метод сечений.
Сделаем мысленный разрез стержня (рис.
2.3), например по а - а, отбросим одну часть
стержня, в данном случае левую, и
рассмотрим равновесие оставшейся правой
части.
Взаимодействие частей стержня заменим крутящим моментом Тк, уравновешивающим внешний момент Т. Для равновесия отсеченной части необходимо, чтобы алгебраическая сумма всех моментов, действующих на нее, была равна нулю. Отсюда в рассматриваемом случае получим, что Тк = Т. Если на отсеченную часть будет действовать несколько внешних моментов, то, проведя аналогичное рассуждения, можно убедиться, что крутящий момент в сечении численно равен алгебраической сумме внешних скручивающих моментов, действующих по одну сторону от сечения.
Для
наглядного представления о характере
распределения и величине крутящих
моментов по длине стержня строят эпюры
(графики) этих моментов. Построение их
вполне аналогично построению эпюр
продольных сил при растяжении или
сжатии. Для построения эпюр необходимо
условиться о правиле знаков. Общепринятого
правила знаков для крутящих моментов
не существует. Может быть принято любое
правило знаков. Важно лишь принятое
правило выдержать на всем протяжении
эпюры.
Примем следующее правило знаков (рис. 2.4). Крутящий момент в сечении а - а считается положительным, когда внешний момент вращает отсеченную часть против часовой стрелки, если смотреть на отсеченную часть со стороны сечения. Если же внешний момент вращает отсеченную часть по часовой стрелке (при взгляде со стороны сечения), то крутящий момент в сечении будем считать отрицательным.
Построение эпюры крутящих моментов поясним на следующем примере (рис. 2.5): рассмотрим вал CD, опирающийся на подшипники B и A и находящийся в равновесии под действием приложенных к нему в сечениях E, K и L моментов. Сделав сечение а - а где-либо на участке DL и рассмотрев равновесие правой отсеченной части, убедимся, что Тк = 0. Если мы сделаем затем сечение b - b в любом месте участка LK, то из условия равновесия правой от сечения части получим Тк = 20 кН * м.
Момент
считаем положительным в соответствии
с принятым правилом знаков. Сделав
сечение с - с на участке KE из условия
равновесия правой части, получаем 20 -
30 - Тк =
0. Откуда Тк =
-10 кН * м.
Получившаяся эпюра имеет форму двух прямоугольников. Важно заметить, что в местах приложения внешних моментов ординаты эпюры скачкообразно изменяюися на величину приложенного здесь внешнего момента.
Если заданы поперечные нагрузки, вызывающие кручение стержня (рис. 2.2), то предварительно вычисляют внешние скручивающие моменты, создаваемые этими силами. В случае, представленном на рис. 2.2, внешний скручивающий момент от силы F равен T = Fr. После определения внешних моментов определяют внутренние крутящие моменты и строят эпюры, как указано выше.