- •Свойства металлов и сплавов (физические, химические, механические, технологические, служебные):
- •Материалы для производства металлов и сплавов (руды, флюсы, топливо, огнеупорные материалы).
- •Получение стали в кислородном конвертере.
- •Получение стали в электрических печах.
- •Способы разливки стали.
- •Способы повышения качества стали (вакуумирование, обработка синтетическими шлаками, электрошлаковый переплав, вакуумно-дуговой переплав).
- •Чертеж литейно - модельных указаний
- •Формовочные и стержневые смеси и их свойства
- •Ручная формовка песчанных форм
- •Машинная формовка. Встряхивающая машина.
- •Пленочно-вакуумная формовка. Литье по газифицируемым моделям
- •Сборка и заливка литейных форм. Выбивка, очистка отливок.
- •3.4.1. Горячая объемная штамповка
- •3.4.1, Г. Оборудование для объемной штамповки
Чертеж литейно - модельных указаний
Обрабатываемые поверхности по возможности размещают вертикально или в нижней части отливки. Для моей детали предпочтительно вертикальное положение отливки с размещением в нижней части формы.
Припуски на механическую обработку - слои металла, удаляемые в процессе механической обработки отливки с её обрабатываемых поверхностей для обеспечения заданной геометрической точности и качества поверхности. Значения припусков на механическую обработку назначают в зависимости от класса точности номинальных размеров отливки и номера ряда припусков в соответствии с ГОСТ 26645-85. По номинальным размерам обрабатываемых элементов и классу точности отливки назначаю допуски.
Допуски размеров отливки, образованные одной полуформой, устанавливают на 1-2 класса точнее заданного. Поэтому в расчётах я использую класс точности 8
По назначенному допуску и номеру ряда припуска устанавливаю значение припуска.
Отверстия небольшого диаметра усложняют технологический процесс получения отливки. На такие элементы припуски не назначают, а полностью получают механической обработкой. На чертеже на эти элементы назначают напуски.
Формовочные и стержневые смеси и их свойства
1 Требования, предъявляемые к формовочным и стержневым смесям, вытекают из условий их работы. Смеси должны обладать следующими свойствами: огнеупорностью, пластичностью, прочностью, газопроницаемостью, податливостью и непригораемостью.
Огнеупорность — способность смеси не размягчаясь выдерживать высокие температуры заливаемого в форму жидкого металла. От огнеупорности будет зависеть чистота поверхности отливки.
Пластичность — способность смеси давать четкий отпечаток модели (при изготовлении формы) или стержневого ящика (при изготовлении стержня).
Прочность — способность уплотненной смеси сохранять форму без разрушения при транспортировке готовой формы и заливке ее металлом.
Газопроницаемость — способность формовочной и особенно стержневой смеси пропускать через стенки формы и стержень выделяющиеся газы из охлаждающегося металла. При недостаточной газопроницаемости возможно образование газовых раковин в отливке.
Податливость — способность смеси не препятствовать линейной усадке закристаллизовавшегося металла отливки. Охлаждение затвердевшего металла сопровождается уменьшением размеров отливки (линейная усадка), в результате чего металл прочно сжимает стержень и выступающие части формы. Это вызывает напряжения в отливке, а так как усадка происходит при высокой температуре, когда еще металл недостаточно прочен, то при плохой податливости смеси могут образоваться трещины.
Непригораемость — способность смеси не образовывать пригар песка на поверхности отливки, затрудняющий ее механическую обработку.
Кроме того, формовочные и стержневые смеси должны быть негигроскопичными, долговечными и дешевыми.
2 Состав формовочных и стержневых смесей. Наиболее полно указанным свойствам отвечают смеси, приготовленные из кварцевого песка и глины. Кварцевый песок играет роль наполнителя, а глина – связующего материала. Глина улучшает такие свойства смеси, как огнеупорность, прочность и пластичность, но ухудшает газопроницаемость и податливость. Поэтому глины в смеси вводят не более 8…12 % по объему, остальное кварцевый песок, который обеспечивает хорошую огнеупорность и газопроницаемость. Крупнозернистый песок обеспечивает высокую газопроницаемость, но дает шероховатую поверхность отливки и повышает пригар песка, так как жидкий металл заходит в поры между зернами и охватывает их. Мелкий песок дает гладкую поверхность отливки, но резко снижает газопроницаемость смеси. Поэтому при производстве крупных отливок, где требуется отвод большого количества выделяющихся газов, применяют крупнозернистый песок, а при получении мелкого литья, где чистота поверхности является главным требованием, используют мелкозернистый песок.
Предупреждают пригар вводом в смесь противопригарных добавок, таких как каменноугольная пыль, тальк, графит, которые в виде припыла наносят на поверхность форм для чугунных отливок. Из маршалита, магнезита, циркона изготавливают противопригарные краски, которыми красят стержни и полость форм для стальных отливок.
Стержни работают в наиболее тяжелых условиях, так как они окружены жидким металлом со всех сторон (за исключением знаковых частей). Поэтому стержневая смесь должна обладать более высокой прочностью, газопроницаемостью и податливостью. Глина как связующая добавка в стержневой смеси применяется только для крупных стержней простой формы. Для тонких и сложных стержней в качестве связующей добавки в стержневой смеси используют оксоль, жидкое стекло, смолы, декстрин, патоку и др. Для повышения газопроницаемости и податливости в стержневую смесь вводят древесные опилки или торф (2...3 %), которые в процессе сушки стержня выгорают, образуя поры, что повышает газопроницаемость и податливость.
