Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕН ПО МАТЕМАТИКЕ 2014.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
341.81 Кб
Скачать

Вопрос 37

   Уравнения с разделяющимися переменными

Дифференциальное уравнение первого порядка y' = f(x,y) называется уравнением с разделяющимися переменными, если функцию f(x,y) можно представить в виде произведения двух функций, зависящих только от x и y:

где p(x) и h(y) − непрерывные функции. Рассматривая производную y' как отношение дифференциалов , перенесем dx в правую часть и разделим уравнение на h(y):

Дифференциальные уравнения с разделяющимися переменными – это уравнения вида

Вопрос 38 Определение линейного уравнения первого порядка

Дифференциальное уравнение вида

где a(x) и b(x) − непрерывные функции x, называтся линейным неоднородным дифференциальным уравнением первого порядка.

Пример 1

Решить уравнение  y' − y − xex = 0.

Решение.

Запишем данное уравнение в стандартной форме:

      Будем решать это уравнение, используя интегрирующий множитель:

      Тогда общее решение линейного дифференциального уравнения определяется выражением:

     

Вопрос 40

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Рассмотрим линейное дифференциальное уравнение вида

где p, q − постоянные коэффициенты. Для каждого такого дифференциального уравнения можно записать так называемое характеристическое уравнение: Рассмотренные три случая удобно представить в виде таблицы:

Вопрос 41 Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранником. Тетраэдр и параллелепипед - примеры многогранников. Многоугольники, из которых составлен многогранник, называются его гранями. Стороны граней называются рёбрами, а концы рёбер - вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника. Многогранники бывают выпуклые и невыпуклые. Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360o.

рис. 50

Многогранник, составленный из двух равных многоугольников А1А2...Аn и B1B2...Bn, расположенных в параллельных плоскостях, и n-параллелограммов, называется призмой.

Многоугольники А1А2...Аn и B1B2...Bn называются основаниями, а параллелограммы - боковыми гранями призмы. Отрезки А1B1, А2B2, ... , АnBn называются боковыми рёбрами призмы. Боковые рёбра призмы равны друг другу как отрезки параллельных прямых, заключённые между параллельными плоскостями. Призму с основаниями А1А2...Аn и B1B2...Bn обозначают А1А2...АnB1B2...Bn и называют n-угольной призмой.