
- •1 Возникновение и понятие статистики, как науки.
- •2 Предмет статистики как отрасли изучаемого знания
- •3 Метод статистики как отрасли изучаемого знания
- •4 Статистическая совокупность.
- •5 Статистические показатели
- •6 Современная организация и задачи статистики в рф.
- •7. Этапы статистического исследования
- •8 Статистическое наблюдение, цель, объект, единица.
- •9. Виды статистического наблюдения
- •10. Формы статистического наблюдения.
- •11. Ошибки статистического наблюдения.
- •12. Меры по обеспечению точности статистического наблюдения.
- •13. Понятие и сущность абсолютных величин.
- •14. Понятие и сущность относительных величин.
- •15. Виды относительных величин и способы их расчета.
- •16. Основное содержание сводки.
- •17. Порядок проведения группировки, ее виды.
- •18. Статистическая таблица, ее элементы и виды.
- •19. Правила построения статистических таблиц.
- •20. Сущность и значение графического изображения данных. Элементы графиков.
- •21. Основные виды графиков.
- •22. Сущность и значение средних величин.
- •23. Виды средних. Правило мажорантности средних.
- •24. Структурные средние.
- •25. Показатели формы распределения.
- •26. Понятие вариации.
- •27. Вариационный ряд.
- •28. Способы расчета показателей вариации.
- •1) Коэффициент осцилляции
- •2) Линейный коэффициент вариации
- •3) Коэффициент вариации
- •29. Дисперсия, ее свойства.
- •30. Правило сложения дисперсий и его практическое значение.
- •31.Вариация альтернативного признака.
- •32. Ряды динамики, их элементы и виды. Важнейшие условия правильного построения рядов динамики.
- •33. Показатели ряда динамики.
- •34. Средние показатели динамики.
- •35. Выявление и характеристика основной тенденции развития при помощи скользящей средней.
- •36. Выявление и характеристика основной тенденции развития при помощи метода аналитического выравнивания.
- •37. Виды трендовых моделей.
- •38. Статистическое изучение сезонных колебаний.
- •39. Понятие о статистической и корреляционной связи.
- •40. Задачи корреляционно – регрессионного анализа и моделирования.
- •41. Условия применения и ограничения корреляционно-регрессионного метода.
- •42. Коэффициент корреляции рангов.
- •43. Понятие о стохастических и функциональных связях.
- •44. Сущность линии регрессии и основные модели корреляционной связи.
- •45. Регрессионные модели: этапы построения и анализа
- •46. Применение корреляционно – регрессионных моделей в анализе и прогнозе.
- •47. Метод аналитических группировок.
- •48. Оценка тесноты связи.
- •49. Сущность и значение индексного метода и анализа.
- •50. Сущность индексов. Общие и индивидуальные индексы.
- •51. Базисные и цепные индексы, их взаимосвязь.
- •52. Индексы количественных показателей.
- •53. Индексы качественных показателей.
- •54. Агрегатные индексы.
- •55. Территориальные индексы.
- •56. Средняя арифметическая форма индекса.
- •57. Средняя гармоническая форма индекса.
- •58. Индексы постоянного состава.
- •59. Индексы переменного состава.
- •60. Индексы структурных сдвигов.
56. Средняя арифметическая форма индекса.
Средний индекс – это индекс, вычисленный как средняя величина из индивидуальных индексов. Средний индекс должен быть тождественен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая.
Арифметическая форма индекса используется для сводных индексов количественных показателей, а гармоническая форма индекса – для расчета сводных индексов качественных показателей.
Средний арифметический индекс объема продукции вычисляется:
,
так как
.
Индекс Доу-Джонса (Dow Jones Industrial Average Index) определяется как средний арифметический индекс значений курсов акций, котирующихся на Нью-Йоркской фондовой бирже. Один сводный и три групповых индекса рассчитываются каждые полчаса, и ежедневно публикуется из значение на момент закрытия биржи.
Индекс Стэндарда и Пура (Standart and Poor's 500 Stock Index) – индекс, рассчитываемый по курсам акций 500 крупнейших компаний Нью-Йоркской фондовой биржи как средневзвешенный показатель, учитывающий общее количество выпущенных акций.
Индекс цены в средней арифметической форме:
Индекс себестоимости в средней арифметической форме:
В статистике широко известен индекс Струмилина - среднеарифметический индекс, который используется при анализе производительности труда.
Индекс Струмилина показывает во сколько раз возросла или уменьшилась производительность труда или сколько процентов составил рост или снижение производительности труда в среднем по всем единицам исследуемой совокупности.
57. Средняя гармоническая форма индекса.
Средняя гармоническая форма индексов.
Индекс цены в средней гармонической форме:
Индекс физического объема продукции в средней гармонической форме:
Индекс себестоимости в средней гармонической форме:
58. Индексы постоянного состава.
Изменение средней величины показателя зависит от двух факторов – изменения значения индексируемого показателя у отдельных единиц и изменения структуры явления.
Изменение структуры – это изменение доли отдельных групп единиц совокупности в общей их численности. Задача определения влияния каждого фактора определяется с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.
Индекс постоянного состава – это индекс, исчисленный с весами, зафиксированными на уровне одного какого-либо периода, и показывающий изменение только индексируемой величины. Например, индекс фиксированного состава себестоимости продукции:
59. Индексы переменного состава.
Изменение средней величины показателя зависит от двух факторов – изменения значения индексируемого показателя у отдельных единиц и изменения структуры явления.
Изменение структуры – это изменение доли отдельных групп единиц совокупности в общей их численности. Задача определения влияния каждого фактора определяется с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.
Индекс переменного состава – индекс, выражающий соотношение средних уровней изучаемого явления, относящихся в разным периодам времени. Например, индекс переменного состава себестоимости продукции:
.
Отражает изменение не только изменение индексируемой величины (в данном случае, себестоимости), но и структуры совокупности весов (объем).