
- •1 Возникновение и понятие статистики, как науки.
- •2 Предмет статистики как отрасли изучаемого знания
- •3 Метод статистики как отрасли изучаемого знания
- •4 Статистическая совокупность.
- •5 Статистические показатели
- •6 Современная организация и задачи статистики в рф.
- •7. Этапы статистического исследования
- •8 Статистическое наблюдение, цель, объект, единица.
- •9. Виды статистического наблюдения
- •10. Формы статистического наблюдения.
- •11. Ошибки статистического наблюдения.
- •12. Меры по обеспечению точности статистического наблюдения.
- •13. Понятие и сущность абсолютных величин.
- •14. Понятие и сущность относительных величин.
- •15. Виды относительных величин и способы их расчета.
- •16. Основное содержание сводки.
- •17. Порядок проведения группировки, ее виды.
- •18. Статистическая таблица, ее элементы и виды.
- •19. Правила построения статистических таблиц.
- •20. Сущность и значение графического изображения данных. Элементы графиков.
- •21. Основные виды графиков.
- •22. Сущность и значение средних величин.
- •23. Виды средних. Правило мажорантности средних.
- •24. Структурные средние.
- •25. Показатели формы распределения.
- •26. Понятие вариации.
- •27. Вариационный ряд.
- •28. Способы расчета показателей вариации.
- •1) Коэффициент осцилляции
- •2) Линейный коэффициент вариации
- •3) Коэффициент вариации
- •29. Дисперсия, ее свойства.
- •30. Правило сложения дисперсий и его практическое значение.
- •31.Вариация альтернативного признака.
- •32. Ряды динамики, их элементы и виды. Важнейшие условия правильного построения рядов динамики.
- •33. Показатели ряда динамики.
- •34. Средние показатели динамики.
- •35. Выявление и характеристика основной тенденции развития при помощи скользящей средней.
- •36. Выявление и характеристика основной тенденции развития при помощи метода аналитического выравнивания.
- •37. Виды трендовых моделей.
- •38. Статистическое изучение сезонных колебаний.
- •39. Понятие о статистической и корреляционной связи.
- •40. Задачи корреляционно – регрессионного анализа и моделирования.
- •41. Условия применения и ограничения корреляционно-регрессионного метода.
- •42. Коэффициент корреляции рангов.
- •43. Понятие о стохастических и функциональных связях.
- •44. Сущность линии регрессии и основные модели корреляционной связи.
- •45. Регрессионные модели: этапы построения и анализа
- •46. Применение корреляционно – регрессионных моделей в анализе и прогнозе.
- •47. Метод аналитических группировок.
- •48. Оценка тесноты связи.
- •49. Сущность и значение индексного метода и анализа.
- •50. Сущность индексов. Общие и индивидуальные индексы.
- •51. Базисные и цепные индексы, их взаимосвязь.
- •52. Индексы количественных показателей.
- •53. Индексы качественных показателей.
- •54. Агрегатные индексы.
- •55. Территориальные индексы.
- •56. Средняя арифметическая форма индекса.
- •57. Средняя гармоническая форма индекса.
- •58. Индексы постоянного состава.
- •59. Индексы переменного состава.
- •60. Индексы структурных сдвигов.
40. Задачи корреляционно – регрессионного анализа и моделирования.
Необходимо сказать и о других задачах применения корреляционно-регрессионного метода, имеющих не формально математический, а содержательный характер.
1. Задача выделения важнейших факторов, влияющих на результативный признак (т.е. на вариацию его значений в совокупности). Эта задача решается в основном на базе мер тесноты связи факторов с результативным признаком.
2. Задача оценки хозяйственной деятельности по эффективности использования имеющихся факторов производства. Эта задача решается путем расчета для каждой единицы совокупности тех величин результативного признака, которые были бы получены при средней по совокупности эффективности использования факторов и сравнения их с фактическими результатами производства,
3. Задача прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
Такая задача решается путем подстановки ожидаемых, или планируемых, или возможных значений факторных признаков в уравнение связи и вычисления ожидаемых значений результативного признака.
Приходится решать и обратную задачу: вычисление необходимых значений факторных признаков для обеспечения планового или желаемого значения результативного признака в среднем по совокупности. Эта задача обычно не имеет единственного решения в рамках данного метода и должна дополняться постановкой и решением оптимизационной задачи на нахождение наилучшего из возможных вариантов ее решения (например, варианта, позволяющего достичь требуемого результата с минимальными затратами).
4. Задача подготовки данных, необходимых в качестве исходных для решения оптимизационных задач. Например, для нахождения оптимальной структуры производства в районе на перспективу исходная информация должна включать показатели производительности на предприятиях разных отраслей и форм собственности. В свою очередь, эти показатели могут быть получены на основе корреляционно-регрессионной модели либо на основании тренда динамического ряда (а тренд - это тоже уравнение регрессии).
При решении каждой из названных задач нужно учитывать особенности и ограничения корреляционно-регрессионного метода. Всякий раз необходимо специально обосновать возможность причинной интерпретации уравнения как объясняющего связь между вариацией фактора и результата. Трудно обеспечить раздельную оценку влияния каждого из факторов. В этом отношении корреляционные методы глубоко противоречивы. С одной стороны, их идеал - измерение чистого влияния каждого фактора. С другой стороны, такое измерение возможно при отсутствии связи между факторами и случайной вариации признаков. А тогда связь является функциональной, и корреляционные методы анализа излишни. В реальных системах связь всегда имеет статистический характер, и тогда идеал методов корреляции становится недостижимым. Но это не значит, что эти методы не нужны.
В соответствии с сущностью корреляционной связи ее изучение имеет две цели:
1) измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной (зависимость средних величин результативного признака от значений одного или нескольких факторных признаков);
2) измерение тесноты связи двух (или большего числа) признаков между собой.