
- •1 Возникновение и понятие статистики, как науки.
- •2 Предмет статистики как отрасли изучаемого знания
- •3 Метод статистики как отрасли изучаемого знания
- •4 Статистическая совокупность.
- •5 Статистические показатели
- •6 Современная организация и задачи статистики в рф.
- •7. Этапы статистического исследования
- •8 Статистическое наблюдение, цель, объект, единица.
- •9. Виды статистического наблюдения
- •10. Формы статистического наблюдения.
- •11. Ошибки статистического наблюдения.
- •12. Меры по обеспечению точности статистического наблюдения.
- •13. Понятие и сущность абсолютных величин.
- •14. Понятие и сущность относительных величин.
- •15. Виды относительных величин и способы их расчета.
- •16. Основное содержание сводки.
- •17. Порядок проведения группировки, ее виды.
- •18. Статистическая таблица, ее элементы и виды.
- •19. Правила построения статистических таблиц.
- •20. Сущность и значение графического изображения данных. Элементы графиков.
- •21. Основные виды графиков.
- •22. Сущность и значение средних величин.
- •23. Виды средних. Правило мажорантности средних.
- •24. Структурные средние.
- •25. Показатели формы распределения.
- •26. Понятие вариации.
- •27. Вариационный ряд.
- •28. Способы расчета показателей вариации.
- •1) Коэффициент осцилляции
- •2) Линейный коэффициент вариации
- •3) Коэффициент вариации
- •29. Дисперсия, ее свойства.
- •30. Правило сложения дисперсий и его практическое значение.
- •31.Вариация альтернативного признака.
- •32. Ряды динамики, их элементы и виды. Важнейшие условия правильного построения рядов динамики.
- •33. Показатели ряда динамики.
- •34. Средние показатели динамики.
- •35. Выявление и характеристика основной тенденции развития при помощи скользящей средней.
- •36. Выявление и характеристика основной тенденции развития при помощи метода аналитического выравнивания.
- •37. Виды трендовых моделей.
- •38. Статистическое изучение сезонных колебаний.
- •39. Понятие о статистической и корреляционной связи.
- •40. Задачи корреляционно – регрессионного анализа и моделирования.
- •41. Условия применения и ограничения корреляционно-регрессионного метода.
- •42. Коэффициент корреляции рангов.
- •43. Понятие о стохастических и функциональных связях.
- •44. Сущность линии регрессии и основные модели корреляционной связи.
- •45. Регрессионные модели: этапы построения и анализа
- •46. Применение корреляционно – регрессионных моделей в анализе и прогнозе.
- •47. Метод аналитических группировок.
- •48. Оценка тесноты связи.
- •49. Сущность и значение индексного метода и анализа.
- •50. Сущность индексов. Общие и индивидуальные индексы.
- •51. Базисные и цепные индексы, их взаимосвязь.
- •52. Индексы количественных показателей.
- •53. Индексы качественных показателей.
- •54. Агрегатные индексы.
- •55. Территориальные индексы.
- •56. Средняя арифметическая форма индекса.
- •57. Средняя гармоническая форма индекса.
- •58. Индексы постоянного состава.
- •59. Индексы переменного состава.
- •60. Индексы структурных сдвигов.
37. Виды трендовых моделей.
Линейная модель
Экспоненциальная модель
Логистическая модель
Кластерная модель
38. Статистическое изучение сезонных колебаний.
В статистике периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название сезонных колебаний, или сезонных волн, а динамический ряд в этом случае называют тренд-сезонным, или просто сезонным рядом динамики.
Сезонные колебания характеризуются специальными показателями, которые называются индексами сезонности (Is). Совокупность этих показателей отражает сезонную волну.
При использовании способа аналитического выравнивания алгоритм вычислений индексов сезонности следующий:
· по соответствующему полиному вычисляют для каждого месяца (квартала) выравненные уровни намомент времени (t);
· определяют отношения фактических месячных (квартальных данных (у) ксоответствую-щим выравненным данным (уt) в процентах; Ii=(yi:yt)*100;
· находят средние арифметические из процентных соотношений, рассчитанных по одноименным периодам в процентах; Ii=(I1+I2+I3+…+In):n, n – число одноименных периодов.
В общем виде формулу расчета индекса сезонности данным способом можно записать так:
39. Понятие о статистической и корреляционной связи.
Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, могут ли учащиеся с высоким уровнем тревожности демонстрировать стабильные академические достижения, или связана ли продолжительность работы учителя в школе с размером его заработной платы. Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь — это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.
Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.
Корреляционные связи — это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. «Оба термина, — пишет Е.В. Сидоренко, — корреляционная связь и корреляционная зависимость — часто используются как синонимы. Зависимость подразумевает влияние, связь — любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.
Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Статистическая связь может быть представлена уравнением следующего вида:
У, = f (X,) + S»
где у2 - расчётное значение результативного признака.
f (xt)- часть значения результативного признака, сформировавшаяся под воздействием учтённых факторов.
st - часть значения результативного признака, возникающая вследствие действия неконтролируемых факторов или ошибок измерения.
Примером статистической связи может служить зависимость себестоимости единицы продукции от уровня производительности труда: чем выше производительность труда, тем ниже себестоимость. Но на себестоимость единицы продукции помимо производительности труда влияют и другие факторы: стоимость сырья, материалов, топлива, общепроизводственные и общехозяйственные расходы и т.д. Поэтому нельзя утверждать, что изменение производительности труда на 5% (повышение) приведет к аналогичному снижению себестоимости. Может наблюдаться и обратная картина, если на себестоимость будут влиять в большей степени другие факторы, - например, резко возрастут цены на сырье и материалы.
Любую статистическую связь можно представить в виде набора локальных распределений результативного признака при фиксированных значениях факторного:
X1: Уи,У1,2...Уи ... У 1,m
X2 : У 2,1, У 2,2 ...У 2,j ... У 2,m
Xn УП,1, УП,2... УП,j ... Уn,m ,
где i = 1, n, j = 1, m .