
- •1 Возникновение и понятие статистики, как науки.
- •2 Предмет статистики как отрасли изучаемого знания
- •3 Метод статистики как отрасли изучаемого знания
- •4 Статистическая совокупность.
- •5 Статистические показатели
- •6 Современная организация и задачи статистики в рф.
- •7. Этапы статистического исследования
- •8 Статистическое наблюдение, цель, объект, единица.
- •9. Виды статистического наблюдения
- •10. Формы статистического наблюдения.
- •11. Ошибки статистического наблюдения.
- •12. Меры по обеспечению точности статистического наблюдения.
- •13. Понятие и сущность абсолютных величин.
- •14. Понятие и сущность относительных величин.
- •15. Виды относительных величин и способы их расчета.
- •16. Основное содержание сводки.
- •17. Порядок проведения группировки, ее виды.
- •18. Статистическая таблица, ее элементы и виды.
- •19. Правила построения статистических таблиц.
- •20. Сущность и значение графического изображения данных. Элементы графиков.
- •21. Основные виды графиков.
- •22. Сущность и значение средних величин.
- •23. Виды средних. Правило мажорантности средних.
- •24. Структурные средние.
- •25. Показатели формы распределения.
- •26. Понятие вариации.
- •27. Вариационный ряд.
- •28. Способы расчета показателей вариации.
- •1) Коэффициент осцилляции
- •2) Линейный коэффициент вариации
- •3) Коэффициент вариации
- •29. Дисперсия, ее свойства.
- •30. Правило сложения дисперсий и его практическое значение.
- •31.Вариация альтернативного признака.
- •32. Ряды динамики, их элементы и виды. Важнейшие условия правильного построения рядов динамики.
- •33. Показатели ряда динамики.
- •34. Средние показатели динамики.
- •35. Выявление и характеристика основной тенденции развития при помощи скользящей средней.
- •36. Выявление и характеристика основной тенденции развития при помощи метода аналитического выравнивания.
- •37. Виды трендовых моделей.
- •38. Статистическое изучение сезонных колебаний.
- •39. Понятие о статистической и корреляционной связи.
- •40. Задачи корреляционно – регрессионного анализа и моделирования.
- •41. Условия применения и ограничения корреляционно-регрессионного метода.
- •42. Коэффициент корреляции рангов.
- •43. Понятие о стохастических и функциональных связях.
- •44. Сущность линии регрессии и основные модели корреляционной связи.
- •45. Регрессионные модели: этапы построения и анализа
- •46. Применение корреляционно – регрессионных моделей в анализе и прогнозе.
- •47. Метод аналитических группировок.
- •48. Оценка тесноты связи.
- •49. Сущность и значение индексного метода и анализа.
- •50. Сущность индексов. Общие и индивидуальные индексы.
- •51. Базисные и цепные индексы, их взаимосвязь.
- •52. Индексы количественных показателей.
- •53. Индексы качественных показателей.
- •54. Агрегатные индексы.
- •55. Территориальные индексы.
- •56. Средняя арифметическая форма индекса.
- •57. Средняя гармоническая форма индекса.
- •58. Индексы постоянного состава.
- •59. Индексы переменного состава.
- •60. Индексы структурных сдвигов.
20. Сущность и значение графического изображения данных. Элементы графиков.
Статистический график - это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков.
Значение графического метода в анализе и обобщении данных велико. Графическое изображение, прежде всего, позволяет осуществить контроль достоверности статистических показателей, так как представленные на графике они делают более очевидными имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. При построении графического изображения должен быть соблюден ряд требований. Прежде всего, графики должны быть достаточно наглядными, так как весь смысл графического изображения как метода анализа в том и состоит, чтобы наглядно изобразить статистические показатели. Кроме того, график должен быть выразительным, доходчивым и понятным. Чтобы все эти требования выполнялись, каждый график должен включать ряд основных элементов: графический образ; поле графика; пространственные ориентиры; масштабные ориентиры; экспликацию графика.
21. Основные виды графиков.
По способу построения
графики делятся на диаграммы, картограммы и картодиаграммы.
Наиболее распространенным способом графического изображения данных являются диаграммы. Они бывают разных видов:
линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграмм зависит от вида представляемых данных (одна переменная или один показатель, несколько переменных или показателей, количественные или неколичественные) и задачи построения графика.
В зависимости от круга решаемых задач выделяют диаграммы сравнения, структуры, динамики, накопления, рядов распределения величин вариационного ряда.
Графические карты - графики количественного распределения признаков по поверхности или во времени. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения данных на карте пространства или времени, т.е. показывают пространственное или временное размещение или распространенность данных. Они подразделяются на универсальные графики и статистические карты (картограммы, картодиаграммы).
Контрольные карты - вид графических изображений данных и контрольного диапазона, которые позволяют проводить текущий контроль производственного процесса на промышленном предприятии и прогнозировать его развитие.
Взаимосвязанные графики - вид графических изображений, отражающих временное изменение взаимосвязанных разнообразных показателей. Они подразделяются на накопительные и технологические. Более подробные характеристики указанных выше графиков приведены в соответствующих разделах.
22. Сущность и значение средних величин.
Средняя величина представляет собой обобщенную количественную характеристику признака статистической совокупности в конкретных условиях места и времени.
Показатель в форме средней величины отражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков.
Сущность средней заключается в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием основных.
Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности.