Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты тех.мех.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
717.16 Кб
Скачать

Вопрос 1. Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.

Система отсчёта — сопоставленная с континуумом реальных или воображаемых тел отсчёта система координат и прибор(ы) для измерения времени (часы). Используется для описания движения.

Координаты — способ определения положения точки или тела с помощью чисел или других символов.

Радиус-вектор используется для задания положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Траектория — непрерывная линия, которую описывает точка при своём движении.

Скорость — векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта.

Ускорение — векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени.

Угловая скорость — векторная величина, характеризующая скорость вращения тела.

Угловое ускорение — величина, характеризующая быстроту изменения угловой скорости.

Кинема́тика точки  — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей:

  • тело отсчета;

  • систему измерения положения тела в пространстве (систему координат);

  • прибор для измерения времени (часы).

Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить в евклидовой системе координат, поскольку базис в ней является фиксированным и общим для любого положения тела.

Вопрос 2. Напряжения при растяжении и сжатии

При растяжении и сжатии в сечении действует только нормальное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким образом, направление и знак напряжения в сечении совпадают с направлением и знаком силы в сечении.Исходя из гипотезы плоских сечений, можно предположить, что напряжение при растяжении и сжатии в пределах каждого сечения не меняются. По этому напряжение можно рассчитать по формуле: где Nz - продольная сила; А - площадь поперечного сечения. Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения. Нормальные напряжения действуют при растяжении от сечения (рис. 33а), а при сжатии к сечению (рис. 336). Размерность (единица измерения) напряжений -  (Па), однако это слишком малая единица, и практически напряжения рассчитывают в  При определении напряжений брус разбивают На участки нагружений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений. Рассчитывают напряжения по сечениям, и расчёт оформляют в виде эпюры нормальных напряжений.

Билет 10. Простейшие движения твёрдого тела. Кинематические графики. Растяжение и сжатие. Внутренние силовые факторы. Эпюры продольных сил.