
- •Вопрос 1. Основные понятия и аксиомы статики.
- •Вопрос 1. Плоская система сходящихся сил – система сил, линии действия которых лежат в одной плоскости и пересекаются в одной точке. (рис 2.1)
- •Вопрос 2. Кручение. Напряжения и деформация.
- •Вопрос 1.
- •Вопрос 2. Построение эпюр крутящих моментов.
- •Вопрос 1.
- •Вопрос 1. Смотри билет 4 вопрос 1.
- •Вопрос 2.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 1. Равновесие произвольной пространственной системы сил
- •Главный вектор и главный момент плоской системы сил
- •Вопрос 2.
- •Вопрос 1. Центры тяжести некоторых простейших геометрических фигур
- •Вопрос 2.
- •Вопрос 1. Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.
- •Вопрос 2. Напряжения при растяжении и сжатии
- •Вопрос 1. Поступательное движение
- •Вопрос 2. Внутренние силовые факторы
- •Вопрос 2.
- •Вопрос 1. Движение материальной точки. Метод кинетостатики
- •Вопрос 2.Виды соединений деталей машин
- •Вопрос 1. Работа и мощность. Коэффициент полезного действия
- •Вопрос 2.Вопрос 2.Виды соединений деталей машин
- •Вопрос 1.Общие теоремы динамики.
- •Вопрос 2.Фрикционные и ременные передачи.Расчёт передач.
- •Вопрос 1.Осоновные положения сопротивления материалов.
- •Вопрос 2.Прямозубые цилиндрические передачи.
- •Вопрос 1.Основные положения сопротивления материалов,силы внешние и внутренние
- •Вопрос 2.Косозубые цилиндрические передачи
- •Вопрос 1.Сопротивление усталости,предел выносливости
- •Вопрос 2.Винтовые передачи
- •Вопрос 1.Сложное сопротивление,гипотезы прочности
- •Вопрос 2.Червячная передача
- •Вопрос 1.
- •Вопрос 2.Цепные передачи.Расчёт цепных передач
- •Вопрос 1.Изгиб.Нормальные напряжения.
- •Вопрос 2.Валы и оси,их виды.
- •Вопрос 1.Эпюры поперечных сил и изгибающих моментов
- •Вопрос 2.Подшипники скольжения и качения
- •Вопрос 1.
- •Вопрос 2.Редуктор,метод расчёта.
Главный вектор и главный момент плоской системы сил
Рассмотрим плоскую систему сил (F1, F2, ..., Fn),действующих на твердое тело в координатной плоскости Oxy.
Главным вектором системы сил называется вектор R, равный векторной сумме этих сил:
R = F1 + F2 + ... + Fn = Fi.
Для плоской системы сил ее главный вектор лежит в плоскости действия этих сил.
Главным моментом системы сил относительно центра O называется вектор LO, равный сумме векторных моментов этих сил относительно точки О:
LO = MO(F1) + MO(F2) + ... + MO(Fn) = MO(Fi).
Вектор R не зависит от выбора центра О, а вектор LO при изменении положения центра О может в общем случае изменяться.
Для плоской системы сил вместо векторного главного момента используют понятие алгебраического главного момента. Алгебраическим главным моментом LO плоской системы сил относительно центра О, лежащего в плоскости действия сил, называют сумму алгебраических моментов этих сил относительно центра О.
Главный вектор и главный момент плоской системы сил обычно вычисляется аналитическими методами.
Пример
Вопрос 2.
|
ОСНОВНОЕ УСЛОВИЕ ПРОЧНОСТИ. ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ. УСЛОВИЕ ЖЕСТКОСТИ |
|
|
Ответы на вопросы о прочности может дать оценка прочности конструкции, которая сводится к сравнению расчетных напряжений с допускаемыми: |
|
Это и есть основные условия прочности. |
Расчетное напряжение - наибольшее по абсолютной величине сжимающее или стягивающее напряжение, возникающее в опасном сечении конструкции. |
Допускаемые напряжения. |
Допускаемое напряжение определяется по формуле: |
|
Механические
характеристики материалов - величины
предела текучести и предела прочности
определяются опытным путем. Автоматически
вычерчивается график "сила -
продольная деформация" (Р - |
где |
|
|
|
|
|
|
|
|
|
|
В случае пластичного материала в качестве предельного напряжения |
|
В знаменателе стоит нормативный (требуемый) коэффициент запаса прочности по отношению соответственно к пределу текучести и пределу прочности n. |
Он представляет собой величину, большую единицы, зависящую от класса конструкции (капитальная, временная и т.п.), срока ее эксплуатации, нагрузки (статическая, циклическая и т.п.), возможной неоднородности изготовления материала и от вида деформации (растяжение, сжатие, изгиб и т.п.). |
Нормативный коэффициент запаса прочности регламентируется для строительных конструкций СН и Пами, для машиностроительных - внутризаводскими нормами. В большинстве случаев он принимается равным для пластичных материалов nT = 1,5 + 2,5, для хрупких nB = 2,5 + 5. |
В случае, когда решающими для прочности конструкции являются не нормальные, а касательные напряжения (например, при кручении бруса круглого поперечного сечения), условие прочности имеет вид: |
|
|
|
|
В
случае пластичного материала в качестве
предельного |
В
большинстве случаев допускаемые
напряжения при кручении принимают в
зависимости от допускаемых напряжений
при растяжении того же материала.
Например, для стали
=
0,5 [ |
В практике инженерных расчетов считают возможным допускать перенапряжение материала до 3 - 5%. |
Условие жесткости по логике строится так же, как и условие прочности. Однако, ограничения накладываются не на напряжения, а на изменение формы стержня (вала, балки), т.е. деформации. Для разных видов нагружения условия жесткости имеютвид: при растяжении (сжатии) |
|
при кручении |
|
где |
при изгибе |
|
где |
Билет 8. Центр тяжести простых геометрических и плоских составных фигур. Растяжение и сжатие. Продольные и поперечные деформации.