
- •Вопрос 1. Основные понятия и аксиомы статики.
- •Вопрос 1. Плоская система сходящихся сил – система сил, линии действия которых лежат в одной плоскости и пересекаются в одной точке. (рис 2.1)
- •Вопрос 2. Кручение. Напряжения и деформация.
- •Вопрос 1.
- •Вопрос 2. Построение эпюр крутящих моментов.
- •Вопрос 1.
- •Вопрос 1. Смотри билет 4 вопрос 1.
- •Вопрос 2.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 1. Равновесие произвольной пространственной системы сил
- •Главный вектор и главный момент плоской системы сил
- •Вопрос 2.
- •Вопрос 1. Центры тяжести некоторых простейших геометрических фигур
- •Вопрос 2.
- •Вопрос 1. Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.
- •Вопрос 2. Напряжения при растяжении и сжатии
- •Вопрос 1. Поступательное движение
- •Вопрос 2. Внутренние силовые факторы
- •Вопрос 2.
- •Вопрос 1. Движение материальной точки. Метод кинетостатики
- •Вопрос 2.Виды соединений деталей машин
- •Вопрос 1. Работа и мощность. Коэффициент полезного действия
- •Вопрос 2.Вопрос 2.Виды соединений деталей машин
- •Вопрос 1.Общие теоремы динамики.
- •Вопрос 2.Фрикционные и ременные передачи.Расчёт передач.
- •Вопрос 1.Осоновные положения сопротивления материалов.
- •Вопрос 2.Прямозубые цилиндрические передачи.
- •Вопрос 1.Основные положения сопротивления материалов,силы внешние и внутренние
- •Вопрос 2.Косозубые цилиндрические передачи
- •Вопрос 1.Сопротивление усталости,предел выносливости
- •Вопрос 2.Винтовые передачи
- •Вопрос 1.Сложное сопротивление,гипотезы прочности
- •Вопрос 2.Червячная передача
- •Вопрос 1.
- •Вопрос 2.Цепные передачи.Расчёт цепных передач
- •Вопрос 1.Изгиб.Нормальные напряжения.
- •Вопрос 2.Валы и оси,их виды.
- •Вопрос 1.Эпюры поперечных сил и изгибающих моментов
- •Вопрос 2.Подшипники скольжения и качения
- •Вопрос 1.
- •Вопрос 2.Редуктор,метод расчёта.
Вопрос 2.Фрикционные и ременные передачи.Расчёт передач.
Фрикционная передача — кинематическая пара, использующая для передачи механической энергии силы трения.
Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.
Фрикционная передача (от лат. frictio, родительный падеж frictionis — трение), механическая передача, в которой движение передаётся или преобразовывается с помощью сил трения между телами качения — цилиндрами, конусами, прижимаемыми друг к другу. Фрикционные передачи применяют для передачи движения между валами с параллельными (Рисунок 1; а) и пересекающимися осями, для преобразования вращательного движения в винтовое (Рисунок 1; б) и вращательного в поступательное (Рисунок 1; в, г). Они выполняют с постоянным и переменным передаточным отношением.
Пары качения изготовляют из закалённых до высокой твёрдости сталей для передач, преимущественно работающих в масле (требуют высокой точности изготовления); из стали и пластмассы (текстолит или специальные фрикционные пластмассы) — для передач, работающих всухую.
Фрикционные передачи классифицируются:
По расположению осей вращения валов в пространстве:
с параллельными осями
с пересекающимися осями
Ременной передачей (РП) называется механизм, служащий для преобразования вращательного движения при помощи шкивов, закрепленных на валах, и бесконечной гибкой связи — приводного ремня, охватывающего шкивы
Билет 17.
Вопрос 1.Осоновные положения сопротивления материалов.
Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Методами сопротивления материалов выполняются расчеты, на основании которых определяются необходимые размеры деталей машин и конструкций инженерных сооружений.
В отличие от теоретической механики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В то же время, вследствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел.
В состав механики деформируемых тел входят также такие дисциплины, как: теория упругости, теория пластичности, теория ползучести, теория разрушения и др., рассматривающие, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и другими теориями механики твердого деформируемого тела заключается в подходах к решению задач.
Строгие теории механики деформируемого тела базируются на более точной постановке проблем, в связи с чем, для решения задач приходится применять более сложный математический аппарат и проводить громоздкие вычислительные операции. Вследствие этого возможности применения таких методов в практических задачах ограничены.
В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать приемлемые по точности результаты расчетов.
При этом главной задачей курса является формирование знаний для применения математического аппарата при решении прикладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. То есть данный предмет является базовым для формирования инженерного мышления и подготовки кадров высшей квалификации по техническим специализациям.