
- •1)Изгиб.Определение перемещений.
- •2)Определение перемещений при изгибе методом непосредственного интегрирования дифференциального уравнения изогнутой оси балки
- •3) Метод уравнивания постоянных интегрирования при нескольких участках интегрирования
- •4)Использование метода начальных параметров для определения перемещений при изгибе.
- •5)Графоаналитический метод определения перемещений в балках
- •6)Основные требования к критериям прочности и пластичности
- •7) Гипотеза прочности максимальных нормальных напряжений
- •8)Гипотеза прочности максимальных относительных деформаций
- •9)Гипотеза прочности максимальных касательных напряжений
- •10)Энергетическая гипотеза прочности и ее разновидности
- •11)Гипотеза прочности Мора
- •12)Сложное сопротивление. Общие понятия о сложном сопротивлении.
- •13)Определение нормальных напряжений при внецентренном растяжении или сжатии короткой стойки.
- •14) Определение положения нейтральной линии при внецентренном растяжении или сжатии
- •15) Основные свойства нейтральной линии при внецентренном растяжении или сжатии.
- •16) Понятие о ядре сечения при внецентренном растяжении или сжатии и порядок его построения.
- •17)Определение нормальных напряжений при косом изгибе
- •18)Определение положения нейтральной линии при косом изгибе
- •19)Определение прогибов балки при косом изгибе
- •20)Основные понятия об устойчивости механических систем
- •21)Метод Эйлера для определения величины критической силы при центральном сжатии стойки
- •22)Влияние способа закрепления концов стержня на величину критической силы
- •23) Пределы применимости формулы Эйлера
- •24) Практический расчет сжатых стержней на устойчивость
- •25)Общие понятия о безытерационном методе расчета сжатых стержней на устойчивость
- •26)Динамическое действие нагрузок. Солы инерции. Понятие о динамическом коэффициенте. Учет сил инерции при расчетах на динамическую нагрузку
- •27) Действие ударных нагрузок. Продольный удар
- •28) Поперечный удар. Формула коэффициента динамичности при поперечном ударе
- •30)Колебания систем с одной степенью свободы. Свободные колебания.
- •32)Вынужденный колебания с одной степенью свободы
- •33)Динамический коэффициент при колебаниях системы. Понятие о явлении резонанса.
32)Вынужденный колебания с одной степенью свободы
Рассмотрим простейшую систему с одной степенью свободы, которая совершает колебания под действием вынуждающей силы F(t). В любой момент времени на груз массой m действуют две силы: сила упругости пружины, пропорциональная смещению груза X, и возмущающая сила F(t), изменяющаяся во времени по некоторому, заранее заданному закону.
диффернциальное уравнение
33)Динамический коэффициент при колебаниях системы. Понятие о явлении резонанса.
При вынужденных упругих колебаниях системы с грузом Q под действием возмущающей силы H, вызывающей эти колебания, динамический коэффициент вычисляется по формуле
Резона́нс— явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:
г
де
g это ускорение свободного падения (9,8
м/с² для поверхности Земли), а L — длина
от точки подвешивания маятника до
центра его масс. (Более точная формула
довольно сложна, и включает эллиптический
интеграл). Важно, что резонансная частота
не зависит от массы маятника. Также
важно, что раскачивать маятник нельзя
на кратных частотах (высших гармониках),
зато это можно делать на частотах,
равных долям от основной (низших
гармониках).
Резонансные явления могут вызвать необратимые разрушения в различных механических системах.