Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вода,перкосид,хар элем 7 гр,фтор,хлор.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
122.73 Кб
Скачать

6Вопрос.

Хлор — элемент 17-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы VII группы), третьего периода, с атомным номером 17[3]. Обозначается символом Cl(лат. Chlorum). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора — дословно «галоген» переводится как солерод — но оно не прижилось и впоследствии стало общим для 17-й (VIIA) группы элементов, в которую входит и хлор[4]).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях — ядовитый газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом. Молекула хлора двухатомная (формула Cl2).

Получение хлора. Метод Шееле в настоящее время используют редко – разве только во время лекционных демонстраций. В лабораториях для получения хлора используют более сильный окислитель – перманганат калия, который окисляет соляную кислоту уже при комнатной температуре: 2KMnO4 + 16HCl  2KCl + 2MnCl2 + 8H2O + 5Cl2. Этот способ был предложен немецким химиком Карлом Гребе. Аналогично идет реакция и с дихроматом калия:

K2Cr2O7 + 14HCl  2KCl + 2CrCl3 + 3Cl2 + 7H2O. Хлор выделяется также при действии соляной кислоты на хлорную известь: Ca(OCl)Cl + 2HCl  CaCl2 + Cl2 + H2O. Можно окислить соляную кислоту до свободного хлора и концентрированным раствором пероксида водорода – пергидролем (реакция лучше идет на ярком свету). В 1867 английский технолог Генри Дикон разработал непрерывный способ получения хлора путем каталитического окисления хлороводорода кислородом воздуха над медным катализатором (диконовский процесс): 4HCl + O2  2Cl2 + 2H2O. Сейчас этот метод имеет лишь историческое значение.

После того, как Алессандро Вольта создал в 1799 первый химический источник постоянного тока (вольтов столб), многие ученые начали изучать действие этого источника на различные вещества. Оказалось, что при пропускании тока через раствор поваренной соли можно получить хлор и гидроксид натрия. Однако промышленное значение этот метод приобрел только после 1872, когда для производства дешевой электроэнергии начали использовать изобретенные бельгийским мастером З.Т.Граммом динамо-машины. В настоящее время практически весь хлор получают электролизом водных растворов хлорида натрия: 2NaCl + 2H2O  Cl2 + 2NaOH + H2. При этом хлор выделяется на аноде, тогда как на катоде также образуются ценные вещества – водород и гидроксид натрия. Путем повышения давления хлор сжижают и заливают в стальные баллоны, где он хранится под давлением около 6 атм. Чтобы выделяющийся при электролизе хлор не разрушал аноды, их делают из титановых сплавов и покрывают оксидами титана и рутения. Производство это энергоемкое – на тонну хлора расходуется в среднем 3000 кВт-ч электроэнергии. В развитых странах на производство хлора затрачивается около 2% всей вырабатываемой электроэнергии! Но одновременно получают и другие ценные продукты – едкий натр и водород. Получают свободный хлор в огромных количествах. Так, к началу 21 в. только в США его ежегодно производили в количестве более 11 млн. тонн!

Свойства хлора. Хлор – тяжелый (в 2,5 раза тяжелее воздуха) желто-зеленый газ. Молекулы Cl2 легко диссоциируют на атомы при поглощении кванта света, а также при высокой температуре. При 730° С степень диссоциации составляет около 0,02%, а при 1730° С – уже почти 35%. При невысоких давлениях хлор близок к идеальным газам: 1 моль хлора при нормальных условиях занимает объем 22,06 л. При охлаждении до –34° С хлор сжижается, а при –101° С он затвердевает. Температуру сжижения газообразного хлора легко повысить, если увеличить давление; так при давлении 5 атм хлор кипит уже при +10,3° С.

Хлор неплохо растворяется в воде: при 10° С в 1 л воды растворяется 3,15 л хлора, при 20° С – 2,3 л. Образующийся раствор обычно называют хлорной водой. Если насытить хлором при атмосферном давлении холодную (ниже 9,6° С) воду, из раствора выделяются желтоватые кристаллы состава Cl2·6H2O. Такие же кристаллы гидрата хлора образуются при охлаждении влажного газообразного хлора. Нагревая гидрат хлора в одном колене запаянной изогнутой трубки и охлаждая второе колено льдом, Фарадей в 1823 получил жидкий хлор. Хлор хорошо растворяется во многих органических растворителях; так, в 100 г холодного бензола растворяется около 35 г хлора.

Химически хлор очень активен. Он реагирует почти со всеми веществами, даже с платиной (при температурах выше 560° С). А в хлорной воде растворяется и золото. В 1869 профессор химии в Эдинбурге Джемс Альфред Уанклин заметил, что хорошо высушенный хлор не действует на железо и некоторые другие металлы. В результате появилось возможность хранить безводный жидкий хлор в стальных баллонах. Промышленное производство жидкого хлора было налажено в 1888 немецкой фирмой БАСФ.

Высокую химическую активность хлора используют для демонстрации эффектных лекционных опытов. Так, при высыпании в колбу с хлором тонкого порошка металлической сурьмы он вспыхивает на лету красивыми белыми искорками, одновременно образуется белый дым SbCl3. Если в сосуд с хлором внести тонкую оловянную фольгу, она также самовоспламеняется, а на дно падает «огненный дождь»; в этой реакции образуются капли тяжелой дымящейся жидкости – SnCl4. Нагретые железные стружки горят в хлоре красноватым пламенем с образованием рыжего дыма FeCl3. Красный фосфор, внесенный в хлор, горит слабым зеленоватым пламенем. Очень энергично реагирует с хлор с рядом органических соединений. Так, если в цилиндр с хлором бросить комок ваты, смоченной скипидаром, он сразу же загорается, а из цилиндра вырывается пламя и облако сажи. Эффектно горит желтым пламенем в хлоре натрий, образуя на стенках сосуда белый налет соли. Этот опыт в молодости провел будущий академик, лауреат Нобелевской премии по химии Н.Н.Семенов. Собрав со стенок сосуда белый налет, он посыпал им кусок черного хлеба и смело съел; химия не подвела: из ядовитого газа и щелочного металла действительно получилась поваренная соль!

Хлор активно и с выделением значительного количества тепла реагирует с водородом:

Cl2 + H2  2HCl + 184 кДж. Реакция идет по цепному механизму, и если скорость ее инициирования велика (сильное освещение ультрафиолетовым или сине-фиолетовым светом, нагрев до высокой температуры), смесь газов (если хлора в ней содержится более 11,5 и менее 95%) взрывается (см. также ЦЕПНЫЕ РЕАКЦИИ).

Интересна демонстрация горения водорода в атмосфере хлора: иногда во время опыта возникает необычный побочный эффект: раздается гудение. Чаще всего пламя гудит, когда тонкую трубку, по которой подается водород, опускают в заполненный хлором сосуд конической формы; то же справедливо для сферических колб, а вот в цилиндрах пламя обычно не гудит. Это явление назвали «поющим пламенем».

В водном растворе хлор частично и довольно медленно реагирует с водой; при 25° С равновесие: Cl2 + H2  HClO + HCl устанавливается в течение двух суток. Хлорноватистая кислота на свету разлагается: HClO  HCl + O. Именно атомарному кислороду приписывают отбеливающий эффект (абсолютно сухой хлор такой способностью не обладает).

Хлор в своих соединениях может проявлять все степени окисления – от –1 до +7. С кислородом хлор образует ряд оксидов, все они в чистом виде нестабильны и взрывоопасны: Cl2O – желто-оранжевый газ, ClO2 – желтый газ (ниже 9,7о С – яркокрасная жидкость), перхлорат хлора Cl2O4 (ClO–ClO3, светло-желтая жидкость), Cl2O6(O2Cl–O–ClO3, ярко-красная жидкость), Cl2O7 – бесцветная очень взрывчатая жидкость. При низких температурах получены нестабильные оксиды Cl2O3 и ClO3. Оксид ClO2производится в промышленном масштабе и используется вместо хлора для отбеливания целлюлозы и обеззараживания питьевой воды и сточных вод. С другими галогенами хлор образует ряд так называемых межгалогенных соединений, например, ClF, ClF3, ClF5, BrCl, ICl, ICl3.

Хлор и его соединения с положительной степенью окисления – сильные окислители. В 1822 немецкий химик Леопольд Гмелин путем окисления хлором получил из желтой кровяной соли красную: 2K4[Fe(CN)6] + Cl2  K3[Fe(CN)6] + 2KCl. Хлор легко окисляет бромиды и хлориды с выделением в свободном виде брома и иода.

Хлор в разных степенях окисления образует ряд кислот: HCl – хлороводородная (соляная, соли – хлориды), HClO – хлорноватистая (соли – гипохлориты), HClO2 – хлористая (соли – хлориты), HClO3 – хлорноватая (соли – хлораты), HClO4 – хлорная (соли – перхлораты). В чистом виде из кислородных кислот устойчива только хлорная. Из солей кислородных кислот практическое применение имеют гипохлориты, хлорит натрия NaClO2 – для отбеливания тканей, для изготовления компактных пиротехнических источников кислорода («кислородные свечи»), хлораты калия (бертолетова соль), кальция и магния (для борьбы с вредителями сельского хозяйства, как компоненты пиротехнических составов и взрывчатых веществ, в производстве спичек), перхлораты – компоненты взрывчатых веществ и пиротехнических составов; перхлорат аммония – компонент твердых ракетных топлив.

Хлор реагирует со многими органическими соединениями. Он быстро присоединяется к непредельным соединениям с двойными и тройными углерод-углеродными связями (реакция с ацетиленом идет со взрывом), а на свету – и к бензолу. При определенных условиях хлор может замещать атомы водорода в органических соединениях: R–H + Cl2 RCl + HCl. Эта реакция сыграла значительную роль в истории органической химии. В 1840-х французский химик Жан Батист Дюма обнаружил, что при действии хлора на уксусную кислоту с удивительной легкостью идет реакция

СН3СООН + Cl2  CH2ClCOOH + HCl. При избытке хлора образуется трихлоруксусная кислота ССl3СООН. Однако многие химики отнеслись к работе Дюма недоверчиво. Ведь согласно общепринятой тогда теории Берцелиуса положительно заряженные атомы водорода не могли заместиться отрицательно заряженными атомами хлора. Этого мнения придерживались в то время многие выдающиеся химики, среди которых были Фридрих Вёлер, Юстус Либих и, конечно, сам Берцелиус.

Чтобы высмеять Дюма, Вёлер передал своему другу Либиху статью от имени некоего Ш.Виндлера (Schwindler – по-немецки мошенник) о новом удачном приложении якобы открытой Дюма реакции. В статье Вёлер с явной издёвкой написал о том, как в уксуснокислом марганце Mn(CH3COO)2 удалось все элементы, в соответствии с их валентностью, заместить на хлор, в результате чего получилось желтое кристаллическое вещество, состоящее из одного только хлора. Далее говорилось, что в Англии, последовательно замещая в органических соединениях все атомы на атомы хлора, обычные ткани превращают в хлорные, и что при этом вещи сохраняют свой внешний вид. В сноске было указано, что лондонские лавки бойко торгуют материалом, состоящим из одного хлора, так как этот материал очень хорош для ночных колпаков и теплых подштанников.

Либиху шутка понравилась, и он опубликовал ее (на французском языке) от имени Ш.Виндлера всего через несколько страниц после статьи Дюма. Намек получился очень прозрачным. Тем не менее прав оказался все же Дюма.

Реакция хлора с органическими соединениями приводит к образованию множества хлорорганических продуктов, среди которых – широко применяющиеся растворители метиленхлорид CH2Cl2, хлороформ CHCl3, четыреххлористый углерод CCl4, трихлорэтилен CHCl=CCl2, тетрахлорэтилен C2Cl4. В присутствии влаги хлор обесцвечивает зеленые листья растений, многие красители. Этим пользовались еще в XVIII в. для отбеливания тканей.

Хлороводород и соляная кислота

В числе самых важных химических продуктов, получаемых в мире – неорганические кислоты: серная кислота H2SO4, азотная кислота HNO3 и соляная кислота HCl. В настоящее время их производят в огромных количествах: это миллионы тонн. История этих кислот насчитывает не одну сотню лет – способы их получения были разработаны во времена зарождения химических ремесел и получили развитие в XVI–XVII веках.

Исторические сведения

Хотя алхимики средневековой Европы не знали состава кислот и, конечно, не имели понятия об их формулах, они успешно получали и использовали «купоросное масло» (серную кислоту) и «крепкую водку» (азотную кислоту). В то время для наименования кислот, особенно летучих, использовали также слово «дух». Поэтому азотную кислоту также называли «дух из селитры» (спиритус нитри).

Соляную (хлороводородную) кислоту HCl называли «дух из солей» (спиритус салис), или «кислый спирт». Ее получали в аптеках прокаливанием смеси поваренной соли NaCl и железного купороса – соли состава FeSO4∙7H2O. Разложение смеси отвечало реакции:

FeSO4∙7H2O + 4NaCl = 4HCl↑ + 2FeO + Na2SO4 + 10Н2О↑.

Выделившийся газообразный хлороводород HCl поглощали водой.

Концентрированная соляная кислота поражала своими свойствами самых опытных и видавших виды алхимиков-аптекарей: «кислый спирт» дымил на воздухе, разъедал металлы и ткани. Работа с концентрированными кислотами требовала особой тщательности, при попадании на слизистую и кожу они вызывали серьезные ожоги.

Позднее, начиная со второй половины XVII века, когда Глаубер разработал новый способ получения соляной кислоты, ее стали получать по-другому, нагреванием смеси поваренной соли NaCl и концентрированной серной кислоты Н2SO4:

2NaCl + H2SO4 = 2HCl↑ + Na2SO4.

Реакция Глаубера дает возможность получить более чистую соляную кислоту, чем «купоросный» способ. Эту реакцию вели в ретортах при нагревании на печи (рис. 1).

Выделяющийся хлороводород поглощался водой, и в результате получалась соляная кислота довольно высокой концентрации (около 30 %).

В России метод Глаубера для получения соляной кислоты нашел применение только с 1790 г. и использовался почти до середины XX века.

Применение хлороводорода и соляной кислоты

Хлороводород – главный химический продукт, который производят в огромном количестве. Это известный лабораторный реактив, применяемый и как газ, и как водный раствор (кислота). В настоящее время для многотоннажного производства хлороводорода применяют прямой синтез – реакцию водорода с хлором; для этого не требуется катализатор, а источники водорода и хлора легко доступны (оба газа получают при электролизе водных растворов любых солей-хлоридов). Другой важный источник HCl – побочные продукты хлорирования углеводородов. Традиционный сульфатный процесс (обработка NaCl концентрированной серной кислотой) тоже остается важным промышленным источником кислоты. Мировое производство HCl составляет порядка 10 млн т ежегодно, что делает это вещество первым по объему получения среди всех химических продуктов.

Газообразный HCl для промышленных целей без затруднений транспортируют по стальному трубопроводу, в автоцистернах или на трейлерах. Его также хранят в баллонах разного размера.

В промышленности хлороводород применяют для производства неорганических химикатов, например, для получения безводного NH4Cl прямым взаимодействием с NH3, для синтеза безводных хлоридов металлов. Газообразный HCl также применяется при получении Al2O3 и TiO2, при выделении магния из морской воды, во многих процессах выделения и очистки редких металлов и некоторых неметаллов, например Ge, Sn, V, Mn, Ta, W и Ra.

Хлороводородная (соляная) кислота также производится в огромном количестве. Наиболее высок спрос на хлороводородную кислоту для травления стали и других металлов, для удаления с их поверхности слоя оксидов, а также для очистки нефти. Хлороводородную кислоту также используют для нейтрализации сточных вод, очистки и дубления кожи, при золотодобыче, в процессах получения каучуков, получения анилина из нитробензола, полупродуктов в синтезе красителей.

Получение желатина требует большого количества хлороводородной кислоты для разложения костей, используемых в качестве сырья; здесь применяется высокочистая кислота, поскольку желатин используется в пищевых продуктах. Другие продовольственные области применения HCl – гидролиз крахмала до глюкозы, протекающий под давлением: хлороводородная кислота в небольшой концентрации служит катализатором этого процесса и широко используется для получения «кленового сиропа» из кукурузного крахмала. При высокой концентрации HCl даже древесина (лигнин) может быть превращена в глюкозу.

Других областей применения HCl бесчисленное множество, начиная от очистки кварцевого песка в керамическом производстве и рафинирования масел, жиров и смазок – до получения хлоропренового каучука, поливинилхлоридного пластика, промышленных растворителей, полупродуктов органического синтеза, вискозного искусственного шелка и штапельного волокна. При мокрой обработке текстиля хлороводородная кислота используется как реактив, нейтрализующий избыток щелочи и удаляющий металлические и иные загрязнения.

Загрязняющее вещество

Предельно допустимая концентрация, мг/м3

Загрязняющее вещество

Предельно допустимая концентрация, мг/м3

рабочей зоны

максимальная разовая

среднесуточная

рабочей зоны

максимальная разовая

среднесуточная

Азота диоксид

5,0

0,085

0,085

Бензол

5,0

1,50

0,80

Аммиак

20

0,20

0,20

Дихлорэтан

10

3,0

1,0

Ацетон

200

0,35

0,35

Серы диоксид

10

0,5

0,05

Сероводород

10

0,008

0,008

Метанол

5,0

1,0

0,5

Фенол

5

0,01

0,01

Фтористые соединения (в пересчете на фтор)

0,5

0,02

0,005

Формальдегид

0,5

0,035

0,012

Пыль нетоксичная (известняк)

6

0,5

0,05

Хлор

1,0

0,10

0,03

Этанол

1000

5

5