Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вода,перкосид,хар элем 7 гр,фтор,хлор.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
122.73 Кб
Скачать
  1. Общая характеристика элементов VII группы

Элементы, входящие в VII группу периодической системы, делятся на 2 подгруппы: главную - подгруппу галогенов - и побочную - подгруппу марганца. В эту же группу помещают и водород, хотя его атом имеет на внешнем валентном, уровне единственный электрон и его следовало бы поместить в I группу.

Однако водород имеет очень мало общего как с элементами основой подгруппы - щелочными металлами, так и с элементами побочной подгруппы - медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые 4 элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово "галоген" означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.

Все галогены имеют структуру внешней электронной оболочки s2p5. Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s2р6). Наименьший радиус атома в подгруппе - у фтора, у остальных он увеличивается в ряду F < Cl < Br < I < Аt и составляет соответственно 133; 181; 196; 220 и 270 нм. В таком же порядке уменьшается сродство атомов элементов к электрону.

Галогены - очень активные элементы. Они могут отнимать электроны не только у атомов, которые их легко отдают, но и у ионов и даже вытеснять другие галогены, менее активные, из их соединений. Например фтор вытесняет хлор из хлоридов, бром из бромидов, а иод из иодидов.

Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше 1-го неспаренного электрона и проявляет валентность только -1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность -1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода.

К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего 2 электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.

Марганец распространен в природе и широко используется в промышленности.

Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые - Э. Сегре и К. Перрье, 1937 г.) Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых.

Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения сплавам увеличивает их механическую прочность.

Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re2O7.

Общая характеристика галогенов и хлора  В группу галогенов входят фтор, хлор, бром, иод и астат. Эти элементы составляют VII группу периодической системы Д. И. Менделеева. Электронная конфигурация внешнего слоя у атомов этих элементов ns2np5, где n - номер периода. Всего во внешнем электронном слое атомов галогенов 7 электронов, что предопределяет свойство галогенов присоединять электрон. Галогены являются сильными окислителями, непосредственно взаимодействуют почти со всеми металлами и неметаллами, за исключением кислорода, углерода, азота и благородных газов. Связь в галогенидах щелочных и щелочноземельных металлов ионная, в остальных - ковалентная. Галогены образуют двухатомные непрочные молекулы. Легкость распада молекул галогенов на атомы - одна из причин их высокой химической активности.  В свободном состоянии галогены состоят из двухатомных молекул: F2, Cl2, Br2, I2. Астат - радиоактивный элемент и может быть получен только искусственным путем. От фтора к иоду изменяются физические свойства галогенов: растет плотность, увеличиваются размеры атомов, повышаются температуры кипения и плавления. С увеличением порядкового номера окислительная способность галогенов в свободном состоянии падает. Поэтому каждый предыдущий галоген вытесняет последующий из его соединений с металлами и водородом, например: 2КСl + F2 = 2КF + Cl2 Фтор - самый активный неметалл. Он проявляет только одну степень окисления -1, непосредственно реагирует почти со всеми металлами (даже с золотом и платиной), а также с неметаллами. Раствор фтороводорода в воде называют плавиковой кислотой, а ее соли называются фторидами. Химическим путем фтор получить невозможно, поэтому используется исключительно электролиз. Хлор, бром и иод проявляют степень окисления -1 и +1. Степень окисления -1 наиболее характерна для галогенов. Из-за высокой химической активности галогены в природе существуют только в связанном виде. Хлор впервые был получен в 1774 г. шведским химиком К. Шееле. Хлор - газ желтоватого цвета с резким запахом, в 2,5 раза тяжелее воздуха. Температура плавления - 101°C, кипения - 34,1°C. Неплохо растворим в воде - один объем воды поглощает примерно 2,5 объемов хлора. Хлор очень ядовит. Хлор широко используется в промышленности для отбелки тканей, получения соляной кислоты, белильной извести, ядохимикатов, для обеззараживания питьевой воды.

Некоторые закономерности в Периодической таблице Д.И. Менделеева.

Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

1. При перемещении вдоль периода СПРАВА НАЛЕВО металлические свойства элементов УСИЛИВАЮТСЯ. В обратном направлении возрастают неметаллические.

2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой "шубой" из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.

б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.

3. Перечисленные выше причины объясняют, почему СЛЕВА НАПРАВО УСИЛИВАЮТСЯ ОКИСЛИТЕЛЬНЫЕ свойства, а при движенииСВЕРХУ ВНИЗ - ВОССТАНОВИТЕЛЬНЫЕ свойства элементов.

4. По той же причине, что и окислительные свойства элементов, их ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тожеСЛЕВА НАПРАВО, достигая максимума у галогенов. Не последнюю роль в этом играет степень завершенности валентной оболочки, ее близость к октету.

5. При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.

в) Закономерности, связанные с размерами атомов.

6. Размеры атомов (АТОМНЫЕ РАДИУСЫ) при перемещении СЛЕВА НАПРАВО вдоль периода УМЕНЬШАЮТСЯ. Это объясняют тем, что электроны все сильнее притягиваются к ядру по мере возрастания заряда ядра. Даже увеличение числа электронов на внешней оболочке (например, у фтора по сравнению с кислородом) не приводит к увеличению размеров атома. Наоборот, размеры атома фтора меньше, чем атома кислорода 

7. При перемещении СВЕРХУ ВНИЗ АТОМНЫЕ РАДИУСЫ элементов РАСТУТ, потому что заполнено больше электронных оболочек.

г) Закономерности, связанные с валентностью элементов.

8. Элементы одной и той же подгруппы (в короткой форме таблицы) или группы (в длинной) имеют аналогичную конфигурацию внешних электронных оболочек и, следовательно, одинаковую валентность в соединениях с другими элементами.

9. s-Элементы имеют валентности, совпадающие с номером их группы (в любой форме таблицы).

10. p-Элементы имеют наибольшую возможную для них валентность, равную номеру группы в короткой форме Периодической таблицы. Кроме того, они могут иметь валентность, равную разности между числом 8 (октет) и номером их группы в короткой форме таблицы (этот номер совпадает с числом электронов на внешней оболочке).

11. d-Элементы обычно обнаруживают несколько разных валентностей, которые нельзя точно предсказать по номеру группы.

12. Не только элементы, но и многие их соединения - оксиды, гидриды, соединения с галогенами - обнаруживают периодичность. Для каждой ГРУППЫ элементов можно записать формулы соединений, которые периодически "повторяются"

Фтор

9

F

 

Фтор Fluorine

(He)2s22p5

Атомный номер

9

Атомная масса

18,998

Плотность, кг/м³

1,696

Температура плавления, °С

-219,6

Температура кипения, °С

-188,2

Теплоемкость, кДж/(кг·°С)

0,753

Электроотрицательность

4,0

Ковалентный радиус, Å

0,72

1-й ионизац. потенциал, эв

17,42

Фтор

Историческая справка

Распространение в природе

Физические свойства

Химические свойства

Получение

Применение

Фтор в организме

Фтор (лат. Fluorum), F, химический элемент VII группы периодической системы Менделеева, относится к галогенам, атомный номер 9, атомная масса 18,998403; при нормальных условиях (0 °С; 0,1 Мн/м2, или 1 кгс/см2) - газ бледно-желтого цвета с резким запахом.

Природный Фтор состоит из одного стабильного изотопа 19F. Искусственно получен ряд изотопов, в частности: 16F с периодом полураспада T½ < 1 сек, 17F (T½ = 70 сек) , 18F (T½ = 111 мин) , 20F (T½ = 11,4 сек) , 21F (T½ = 5 сек).

Историческая справка. Первое соединение Фтора - флюорит (плавиковый шпат) CaF2 - описано в конце 15 века под названием "флюор" (от лат. fluo - теку, по свойству CaF2 делать жидкотекучими вязкие шлаки металлургических производств). В 1771 году К. Шееле получил плавиковую кислоту. Свободный Фтор выделил А. Муассан в 1886 электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF2.

Химия Фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 годов и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "Фтор" (от греч. phthoros - разрушение, гибель), предложенное А. Ампером в 1810 году, употребляется только в русском языке; во многих странах принято название "флюор".

Распространение Фтора в природе. Среднее содержание Фтора в земной коре (кларк) 6,25·10-2% по массе; в кислых изверженных породах (гранитах) оно составляет 8·10-2%, в основных - 3,7·10-2%, в ультраосновных - 1·10-2% . Фтор присутствует в вулканических газах и термальных водах. Важнейшие соединения Фтора - флюорит, криолит и топаз. Всего известно более 80 фторсодержащих минералов. Соединения Фтора находятся также в апатитах, фосфоритах и других. Фтор - важный биогенный элемент. В истории Земли источником поступления Фтора в биосферу были продукты извержения вулканов (газы и др.).

Физические свойства Фтора. Газообразный Фтор имеет плотность 1,693 г/л (0°С и 0,1 Мн/м2, или 1 кгс/см2), жидкий - 1,5127 г/см3 (при температуре кипения); tпл -219,61 °С; tкип -188,13 °С. Молекула Фтора состоит из двух атомов (F2); при 1000 °С 50% молекул диссоциирует, энергия диссоциации около 155 кДж/моль (37 ккал/моль). Фтор плохо растворим в жидком фтористом водороде; растворимость 2,5·10-3 г в 100 г HF при -70 °С и 0,4·10-3 г при -20 °С; в жидком виде неограниченно растворим в жидком кислороде и озоне.

Химические свойства Фтора. Конфигурация внешних электронов атома Фтора 2s22p5. В соединениях проявляет степень окисления -1. Ковалентный радиус атома 0,72Å, ионный радиус 1,ЗЗÅ. Сродство к электрону 3,62 эв, энергия ионизации (F → F+) 17,418эв. Высокими значениями сродства к электрону и энергии ионизации объясняется сильная электроотрицательность атома Фтора, наибольшая среди всех других элементов. Высокая реакционная способность Фтора обусловливает экзотермичность фторирования, которая, в свою очередь, определяется аномально малой величиной энергии диссоциации молекулы Фтора и большими величинами энергии связей атома Фтора с других атомами. Прямое фторирование имеет цепной механизм и легко может перейти в горение и взрыв. Фтор реагирует со всеми элементами, кроме гелия, неона и аргона. С кислородом взаимодействует в тлеющем разряде, образуя при низких температуpax фториды кислорода O2F2, O3F2 и другие. Реакции Фтора с других галогенами экзотермичны, в результате образуются межгалогенные соединения. Хлор взаимодействует с Фтором при нагревании до 200-250 "С, давая монофтористый хлор ClF и трехфтористый хлор ClF3. Известен также ClF5, получаемый фторированием ClF3 при высокой температуре и давлении 25 Мн/м2 (250 кгс/см2). Бром и иод воспламеняются в атмосфере Фтора при обычной температуре, при этом могут быть получены BrF3, BrF5, IF3, IF2. Фтор непосредственно реагирует с криптоном, ксеноном и радоном, образуя соответствующие фториды (например, XeF4, XeF6, KrF2). Известны также оксифториды ксенона.

Взаимодействие Фтора с серой сопровождается выделением тепла и приводит к образованию многочисленных фторидов серы. Селен и теллур образуют высшие фториды SeF6 и TeF6. Фтор с водородом реагируют с воспламенением; при этом образуется фтористый водород. Это радикальная реакция с разветвлением цепей: HF* + Н2 = HF + Н2*; Н2* + F2 = HF + Н + F (где HF* и Н2* - молекулы в колебательно-возбужденном состоянии); реакция используется в химических лазерах. Фтор с азотом реагирует лишь в электрическом разряде. Древесный уголь при взаимодействии с Фтором воспламеняется при обычной температуре; графит реагирует с ним при сильном нагревании, при этом возможно образование твердого фтористого графита (CF)Х или газообразных перфторуглеродов CF4, C2F6 и других. С бором, кремнием, фосфором, мышьяком Фтор взаимодействует на холоду, образуя соответствующие фториды.

Фтор энергично соединяется с большинством металлов; щелочные и щелочноземельные металлы воспламеняются в атмосфере Фтора на холоду, Bi, Sn, Ti, Mo, W - при незначительном нагревании. Hg, Pb, U, V реагируют с Фтором при комнатной температуре, Pt - при температуре темнокрасного каления. При взаимодействии металлов с Фтор образуются, как правило, высшие фториды, например UF6, MoF6, HgF2. Некоторые металлы (Fe, Cu, Al, Ni, Mg, Zn) реагируют с Фтором с образованием защитной пленки фторидов, препятствующей дальнейшей реакции.

При взаимодействии Фтора с оксидами металлов на холоду образуются фториды металлов и кислород; возможно также образование оксифторидов металлов (например, MoO2F2). Оксиды неметаллов либо присоединяют Фтор, например SO2 + F2 = SO2F2, либо кислород в них замещается на Фтор, например SiO2 + 2F2 = SiF4 + О2. Стекло очень медленно реагирует с Фтором; в присутствии воды реакция идет быстро. Вода взаимодействует с Фтором: 2Н2О + 2F2 = 4HF + О2; при этом образуется также OF2 и пероксид водорода Н2О2. Оксиды азота NO и NO2 легко присоединяют Фтор с образованием соответственно фтористого нитрозила FNO и фтористого нитрила FNO2. Оксид углерода (II) присоединяет Фтор при нагревании с образованием фтористого карбонила: СО + F2 = COF2.

Гидрооксиды металлов реагируют с Фтором, образуя фторид металла и кислород, например 2Ва(ОН)2 + 2F2 = 2BaF2 + 2Н2О + О2. Водные растворы NaOH и KOH реагируют с Фтором при 0°С с образованием OF2.

Галогениды металлов или неметаллов взаимодействуют с Фтором на холоду, причем Фтор замещает все галогены.

Легко фторируются сульфиды, нитриды и карбиды. Гидриды металлов образуют с Фтором на холоду фторид металла и HF; аммиак (в парах) - N2 и HF. Фтор замещает водород в кислотах или металлы в их солях, например НNО3(или NaNO3) + F2 = FNO3 + HF (или NaF); в более жестких условиях Фтор вытесняет кислород из этих соединений, образуя сульфурилфторид, например Na2SO4 + 2F2 = 2NaF +SO2F2 + O2. Карбонаты щелочных и щелочноземельных металлов реагируют с Фтором при обычной температуре; при этом получаются соответствующий фторид, СО2 и О2.

Фтор энергично реагирует с органических веществами.

Получение Фтора. Источником для производства Фтора служит фтористый водород, получающийся в основном либо при действии серной кислоты H2SO4· на флюорит CaF2, либо при переработке апатитов и фосфоритов. Производство Фтора осуществляется электролизом расплава кислого фторида калия KF-(1,8-2,0)HF, который образуется при насыщении расплава KF-HF фтористым водородом до содержания 40-41% HF. Материалом для электролизера обычно служит сталь; электроды - угольный анод и стальной катод. Электролиз ведется при 95-100 °С и напряжении 9-11 в; выход Фтора по току достигает 90-95%. Получающийся Фтор содержит до 5% HF, который удаляется вымораживанием с последующим поглощением фторидом натрия. Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (монелъ-металл), из меди, алюминия и его сплавов, латуни, нержавеющей стали.

Применение Фтора. Газообразный Фтор служит для фторирования UF4в UF6, применяемого для изотопов разделения урана, а также для получения трехфтористого хлора ClF3 (фторирующий агент), шестифтористой серы SF6 (газообразный изолятор в электротехнической промышленности), фторидов металлов (например, W и V). Жидкий Фтор - окислитель ракетных топлив.

Широкое применение получили многочисленные соединения Фтора - фтористый водород, фторид алюминия, кремнефториды, фторсульфоновая кислота (растворитель, катализатор, реагент для получения органических соединений, содержащих группу - SO2F), BF3 (катализатор), фторорганические соединения и другие.

Техника безопасности. Фтор токсичен, предельно допустимая концентрация его в воздухе примерно 2·10-4 мг/л, а предельно допустимая концентрация при экспозиции не более 1 ч составляет 1,5·10-3мг/л.

Фтор в организме. Фтор постоянно входит в состав животных и растительных тканей; микроэлемент. В виде неорганических соединений содержится главным образом в костях животных и человека -100-300 мг/кг; особенно много Фтора в зубах. Кости морских животных богаче Фтором по сравнению с костями наземных. Поступает в организм животных и человека преимущественно с питьевой водой, оптимальное содержание Фтора в которой 1-1,5 мг/л. При недостатке Фтора у человека развивается кариес зубов, при повышенном поступлении - флюороз. Высокие концентрации ионов Фтора опасны ввиду их способности к ингибированию ряда ферментативных реакций, а также к связыванию важных в биологическом отношении элементов. (Р, Са, Mg и других), нарушающему их баланс в организме. Органические производные Фтора обнаружены только в некоторых растениях (например, в южноафриканском Dichapetalum cymosum). Основные из них - производные фторуксусной кислоты, токсичные как для других растений, так и для животных. Установлена связь обмена Фтора с образованием костной ткани скелета и особенно зубов.

Отравления Фтором возможны у работающих в химические промышленности, при синтезе фторсодержащих соединений и производстве фосфорных удобрений. Фтор раздражает дыхательные пути, вызывает ожоги кожи. При остром отравлении возникают раздражение слизистых оболочек гортани и бронхов, глаз, слюнотечение, носовые кровотечения; в тяжелых случаях - отек легких, поражение центральной нервной системы и других; при хроническом - конъюнктивит, бронхит, пневмония, пневмосклероз, флюороз. Характерно поражение кожи типа экземы. Первая помощь: промывание глаз водой, при ожогах кожи - орошение 70%-ным спиртом; при ингаляционном отравлении - вдыхание кислорода. Профилактика: соблюдение правил техники безопасности, ношение специальной одежды, регулярные медицинские осмотры, включение в пищевой рацион кальция, витаминов.

Свойства фтороводорода : Физические свойства[править | править исходный текст]

  • Критическая температура фтористого водорода 188 °C, критическое давление 64 атм.

  • Теплота испарения жидкого HF в точке кипения составляет лишь 7,5 кДж/моль (примерно в 6 раз меньше, чем у воды при 20 °C). Это обусловлено тем, что само по себе испарение мало меняет характер ассоциации фтористого водорода (димерная форма, характерная для жидкости, сохраняется и в парах — в отличие от фазового перехода воды).

  • Диэлектрическая проницаемость жидкого фтористого водорода (84 при 0 °C) очень близка к значению д.п. для воды.

Химические свойства

Химические свойства HF зависят от присутствия воды. Сухой фтористый водород не действует на большинство металлов и не реагирует с оксидами металлов. Однако если реакция начнется, то дальше она некоторое время идет с автокатализом, так как в результате взаимодействия количество воды увеличивается:

  • Жидкий HF — сильный ионизирующий растворитель. Все электролиты, растворённые в нём, за исключением хлорной кислоты HClO4, являются основаниями:

В жидком фтороводороде кислотные свойства проявляют соединения, которые являются акцепторами фторид ионов, например BF3, SbF5:

Амфотерными соединениями в среде жидкого фтороводорода являются, например, фториды алюминия и хрома(III):

(AlF3 — как кислота)

(AlF3 — как основание)

  • Фтороводород неограниченно растворяется в воде, при этом происходит ионизация молекул HF:

Kd= 7,2·10−4

Kd= 5,1

В водном растворе HF (плавиковая кислота) является кислотой средней силы. Соли плавиковой кислоты называются фторидами. Большинство их трудно растворимо в воде, хорошо растворяются лишь фториды Na, К, Ag, Al, Sn, Ni, и Mn. Все соли плавиковой кислоты ядовиты.