Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ду и ДМ.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
190.46 Кб
Скачать

Тема 2.2 Подмножество. Понятие универсального множества. Подмножество

Определение: Множество Х является подмножеством Y, если любой элемент множества Х принадлежит множеству Y. Это еще называется нестрогим включением.

Некоторые свойства подмножества:

1.       ХХ - рефлективность

2.       X  Y & YZ  X  Z - транзитивность

3.         X т.е. пустое множество является подмножеством любого множества.

Универсальное множество

Определение: Универсальное множество — это такое множество, которое состоит из всех элементов, а так же подмножеств множества объектов исследуемой области, т.е.

1.       Если М I , то М I

2.       Если М I , то Ώ(М) I , где под Ώ(М) — понимаются все возможные подмножества М, или Булеан М.

Универсальное множество обычно обозначается I.

Универсальное множество может выбираться самостоятельно, в зависимости от рассматриваемого множества, и решаемых задач.

Рассматривая множество целых положительных чисел, в качестве универсального множества можно взять и множество целых чисел, и множество действительных чисел, и множество комплексных чисел, и само множество целых положительных чисел.

Более подробно о свойствах универсального множества мы поговорим, обсуждая операции над множествами. Скажем только, что если роль нуля в алгебре множеств играет пустое множество. То универсальное множество, играет роль единицы в алгебре множеств.

Тема 2.3 Операции над множествами.

Теперь определим операции над множествами.

1. Пересечение множеств.

Определение: Пересечением множеств Х и У называется множество, состоящее из всех тех, и только тех элементов, которые принадлежат и множеству Х и множеству У.

Например: Х={1,2,3,4} У={2,4,6} пересечением {2,4}

Определение: Множества называются непересекающимися, если не имеют общих элементов, т.е. их пересечение равно пустому множеству.

Например: непересекающимися множествами являются множества отличников группы и неуспевающих.

Данную операцию можно распространить и на большее чем два число множеств. В этом случае это будет множество элементов, принадлежащих одновременно всем множествам.

Свойства пересечения:

1.        X∩Y = Y∩X - коммутативности

2.       (X∩Y) ∩Z =X∩ (Y∩Z)=X∩Y∩Z - ассоциативности

3.       X∩ = 

4.       X∩I = Х

2. Объединение множеств

Определение: Объединением двух множеств называется множество, состоящее из всех и только тех элементов, которые принадлежат хотя бы одному из множеств Х или У.

Например: Х={1,2,3,4} У={2,4,6} объединением {1,2,3,4,6}

Данную операцию можно распространить и на большее чем два число множеств. В этом случае это будет множество элементов, принадлежащих хотя бы одному из этих множеств.

Свойства объединения:

1.       XUY= YUY- коммутативности

2.       (X UY)UZ =XU (YUZ)=XUYUZ - ассоциативности

3.       XU = X

4.       XUI = I

Из свойств операций пересечения и объединения видно, что пустое множество аналогично нулю в алгебре чисел.

3. Разность множеств

Определение: Данная операция, в отличие от операций пересечения и объединения определена только для двух множеств. Разностью множеств Х и У называется множество, состоящее их всех тех и только тех элементов, которые принадлежат Х и не принадлежат У.

Например: Х={1,2,3,4} У={2,4,6} разность {1,3}

Как мы уже видели, роль нуля в алгебре множеств играет пустое множество. Определим множество, которое будет играть роль единицы в алгебре множеств