Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техн мех 16-17.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
697.34 Кб
Скачать

Балансировка роторов при различных видах неуравновешенности

  1. Статическая неуравновешенность

Статическая неуравновешенность свойственна такому ротору, центр масс S которого не находится на оси вращения, но главная центральная ось инерции (I - I) которого параллельна оси вращения. В этом случае ест 0, и главный вектор дисбалансов Dст 0. Главный момент дисбалансов ротора MD = 0. Статическая неуравновешенность выражается только главным вектором дисбалансов. Он направлен радиально и вращается вместе с ротором.

Примером может служить коленчатый вал одноцилиндровой машины, ротор крыльчатки со смещенной осью вращения.

;

.

Величина может значительно превышать G , если будут значительными или ест. Например: если G =10 H. m = G/g = 1кг, ест. = 0,1 мм, = 100 рад/с, то = 104  1  0,1 = 103 Н, т.е. в 1000 раз больше статической нагрузки ротора на его опоры.

Статическая неуравновешенность может быть устранена, если к ротору прикрепить добавочную массу mк, так называемую корректирующую массу. Ее нужно разместить с таким расчетом, чтобы . Корректирующая масс определяется: mk = Dk / eК , где величиной eК задаются из соображений удобства размещения противовесов. Направление вектора DК противоположно направлению Dст. Центр корректирующей массы должен находиться на линии действия вектора Dст, а вектор eК должен быть направлен в сторону противоположную ест.

Однако статическую балансировку не всегда конструктивно удается выполнить одной корректирующей массой. Так для конструкции одноколенчатого вала применяют две плоскости коррекции, а пространство между этими плоскостями оставляют свободным для движения шатуна. В этом случае .

Обычно , а .

  1. Моментная неуравновешенность

Моментная неуравновешенность имеет место в том случае, когда центр масс S находится на оси вращения, а главная центральная ось инерции I-I наклонена к оси вращения ротора под углом (рис. 11. 4)

В этом случае ест = 0, следовательно Dст = 0, так что моментная неуравновешенность выражается только лишь главным моментом дисбалансов MD, т.е. парой дисбалансов Dм1 и Dм2, которая вращается вместе с ротором. Примером может служить двухколенчатый вал, для которого MD =MD h. Опоры А и В нагружены парой сил (FA , FB), векторы которых вращаются вместе с валом.

Рис. 11. 4

Так как пара сил уравновешивается только парой, то устранить моментную неуравновешенность можно в том случае, если применить не менее чем две корректирующие массы. Их расположение в плоскостях коррекции и их величины должны быть такими, чтобы дисбалансы корректирующих масс mК1 и mК2 составили бы именно пару DК1 и DК2 . Массы выбираются и размещаются так, чтобы момент их дисбалансов MDК был по величине равен, а по направлению противоположен моменту дисбалансов ротора: MDk = - МD , MDК = DК1 LК + DК2 LК = MDК1 + MDК2,

где DК = mК eК .

  1. Динамическая уравновешенность

Динамическая уравновешенность является совокупностью двух предыдущих. При динамической неуравновешенности главная центральная ось инерции ëèáî пересекает ось вращения не в центре масс ротора точке S, либо перекрещивается с ней; и главный вектор дисбалансов Dст , и главный момент дисбалансов МD не равны нулю (рис. 11. 5):Dст 0, МD 0. т.е. необходимо уравновесить вектор Dст и момент дисбалансов МD.

Рис. 11. 5

Для этого достаточно разместить на роторе две корректирующие массы mК1 и mК2 на расстояниях от оси вращения eК1 и eК2 , а от центра масс S, соответственно на lК1 и lК2. Массы выбираются и размещаются так, чтобы момент их дисбалансов MDК был по величине равен, а по направлению противоположен моменту дисбалансов ротора МD:

MDК = - МD , MDК = DК1 lК1 + DК2 lК2 = MDК1+ MDК2 ,

где DК1 = mК1eК1 и DК2 = mК2 eК2,

а векторная сумма дисбалансов была равна и противоположно направлена вектору Dст: Dст = - DК = - (DК1 + DК2 ) .

В этих зависимостях величинами lКi и eКi задаются из условий удобства размещения противовесов на роторе, а величины mКi рассчитывают.

Из вышеизложенного следует, что ликвидация всякой неуравновешенности – и статической, и моментной, и динамической – имеет своим результатом то, что главная центральная ось инерции ротора совмещается с его осью вращения, или аналитически Dст = 0, МD = 0 . В этом случае ротор называется полностью сбалансированным. Отметим важное свойство такого ротора: если ротор полностью сбалансирован для некоторого значения угловой скорости, то он сохраняет свою полную сбалансированность при любой другой угловой скорости, как постоянной, так и переменной.