
- •Предмет и методы нормальной физиологии человека. Нормальная физиология в системе стоматологического образования.
- •2. Биологическая мембрана. Свойства и функции. Мембранные белки. Гликокаликс.
- •Классификация мембранных белков
- •Топологическая классификация
- •Биохимическая классификация
- •3. Транспорт веществ через мембрану. Эндоцитоз, зкзоцитоз. Пассивный, активный транспорт. Котранспорт.
- •4. Опыты Гальвани. Гальванические явления в полости рта.
- •5. Мембранный потенциал покоя : регистрация, генез, изменения. Локальный ответ.
- •6. Опыт Маттеучи. Потенциал действия. Изменение возбудимости при возбуждении
- •7. Законы возбуждения. Законы раздражения возбудимых тканей. Закон «силы-времени» (Гоорвег-Вейс-Лапик)
- •Законы раздражения: силы, времени, градиента
- •Закон силы
- •Закон времени
- •Закон градиента
- •Законы возбуждения: «всё или ничего», «силы»
- •8. Действие постоянного подпорогового тока на возбудимые ткани ( Пфлюгер, Вериго)
- •9. Замыкательно-размыкательные законы Пфлюгера.
- •10. Парабиоз Введенский
- •11. Возбуждение как волновой процесс. Тау-модель распространения возбуждения. Механизм повторного входа возбуждения.
- •Описание процессов распространения автоволн. Тау-модель распространения возбуждения.
- •Повторный вход возбуждения (re-entry)
- •Условия возникновения циркуляции в замкнутых возбудимых структурах
- •12. Опыт Эрлангера-Гассера. Классификация нервных волокон по Эрлангеру-Гассеру. Опыт Эрлангера - Гассера
- •Объяснение опыта Эрлангера - Гассера
- •13. Синапсы: классификация, план строения, этапы передачи сигнала.
- •Этапы передачи сигнала в химическом синапсе.
- •Медиаторы химического синапса. Опыт о.Лёви. Принцип г.Х.Дейла, происхождение. Комедиаторы, модуляторы, агонисты, антагонисты.
- •Доказательство возможности химической передачи возбуждения. Опыт о.Лёви.
- •Виды (классификация) медиаторов химического синапса
- •Аминокислоты
- •Принцип г.Х.Дейла.
- •Происхождение медиаторов химического синапса.
- •Ионотропные синапсы. Постсинаптические потенциалы. Метаботропные синапсы. Структура и функция g-белка при передаче сигнала.
- •Структура и функция g-белка при передаче сигнала.
- •Особенности строения и функции нервно-мышечного синапса скелетного мышечного волокна. Миниатюрный потенциал концевой пластинки.
- •Структура нервно-мышечного синапса.
- •Этапы передачи возбуждения в нмс.
- •Миниатюрный потенциал концевой пластинки
- •Скелетная мышца: иерархия структурных сократительных компонентов. Миофибриллы. Саркомер. Классификация скелетных мышечных волокон и мышц.
- •Структурная организация миофибриллы. Саркомер.
- •Сводная классификация мышечных волокон
- •Механизм мышечного сокращения и расслабления мышцы. Электромеханическое сопряжение при сокращении мышцы. Цикл миозиновых мостиков. Энергетика мышечного сокращения.
- •Расслабление скелетного миоцита
- •Электромеханическое сопряжение при сокращении скелетного миоцита
- •Рабочий цикл миозиновых (поперечных) мостиков
- •Режимы и типы сокращений скелетной мышцы. Оптимум и пессимум частоты раздражения скелетной мышцы. Сила и работа мышц. Динамометрия. Закон средний нагрузок.
- •Физиология гладких мышц: типы, сократительный аппарат, механизм сокращения и расслабление, энергетика.
- •Особенности расположение сократительных филаментов в гладком миоците.
- •Рабочий цикл миозиновых мостиков гладкого миоцита
- •Расслабление
- •Физиологические свойства миокарда. Автоматия сердца. Проводящая система сердца, её функциональные особенности. Физиологические свойства миокарда
- •Изменение физиологических свойств миокарда (типы влияний на свойства миокарда)
- •Проводящая система сердца
- •Проводящие пути предсердий
- •Проводящая система желудочков
- •Дополнительные проводящие пути
- •Автоматия в миокарде
- •Сердце как электрический генератор. Физиологические основы электрокардиографии. Сердце как электрический генератор
- •Внешнее электрическое поле сердца
- •Единый сердечный диполь
- •Фазовый анализ сердечного цикла.
- •Фазовая структура сердечного цикла
- •Систола желудочков
- •Диастола желудочков
- •Сердце как насос. Функциональные объёмы сердца. Показатели производительности сердца. Функциональные объёмы сердца.
- •Показатели производительности сердца.
- •Клинико-физиолгические методы определения сократительной функции сердца.
- •Принцип Фика при определении сердечного выброса
- •Метод Стюарта-Гамильтона определенияи сердечного выброса.
- •Системное кровообращение. Функциональная классификация кровеносных сосудов. Основные законы гемодинамики.
- •Ёмкостные сосуды
- •Шунтирующие сосуды
- •Методики измерения кровяного давления в эксперименте и клинике
- •Органное кровообращение. Функциональные особенности органных артериальных и венозных сосудов, их центральная и местная регуляция. Органы-депо крови. Методы изучения органного кровообращения.
- •Лимфообразование и механизмы его регуляции. Лимфатическая система и ее функции. Факторы, обеспечивающие лимфоотток и механизмы его регуляции.
- •Регуляция сердечной деятельности, центральной и периферической гемодинамики.
- •Теории регуляция сердечного выброса
- •«Сердечные» теории
- •«Периферические» теории
- •Объединение концепций регуляции сердечного выброса
- •32. Внутренняя среда организма. Понятие о системе крови (Ланг)
- •33. Основные функции крови. Клинические методы исследования крови. Состав и количество крови человека. Гематокрит, Основные физиологические константы крови и механизмы их регуляции.
- •Транспортная функция крови
- •Защитная функция крови
- •Регуляторная функция крови
- •Состав крови
- •34. Плазма и ее состав. Осмотическое и онкотическое давление. Кислотно-основное состояние крови.
- •Кислотно‑основное состояние крови
- •Обеспечение постоянства рH крови. Буферные системы крови
- •Осмотическое и онкотическое давление крови
- •Функциональные системы осморегуляции
- •35.Лимфа, внесосудистые жидкие среды организма. Их роль в обеспечении жизнедеятельности клеток организма.
- •36. Эритроциты. Эритрон. Гемоглобин. Цветовой показатель. Соэ, гемолиз, эритропоэз
- •Виды гемоглобина в зависимости от состояния гема и глобина:
- •Цветовой показатель
- •37. Лейкоциты. Лейкоцитарная формула. Лейкон.Лейкопоэз
- •38. Тромбоциты: строение, количество, формы, функции. Система мегакариоцит-тромбоцит.
- •39. Группы крови. Резус-принадлежность. Переливание крови. Кровезамещающие растворы.
- •40. Гемостаз. Основные факторы, участвующие в свертываемости крови.
- •41. Физиологическая система регуляции агрегатного состояния крови.
- •42. Дыхание: определение, значение, основные этапы.
- •Основные этапы процесса легочного дыхания
- •43. Физиология дыхательных путей.
- •Значение мерцательного эпителия дыхательных путей
- •44. Вентиляция лёгких. Дыхательные объемы и емкости: понятие, методы определения.
- •Неравномерность регионарной вентиляции
- •Методы исследования
- •45. Газообмен в легких. Диффузная способность легких.
- •Движущая сила газообмена в лёгких
- •Градиент давления газов
- •Закон Фика
- •46. Транспорт газов с кровью. Факторы, влияющие на образование и диссоциацию оксигемоглобина. Кислородная емкость крови. Оксигемометрия. Газообмен между кровью и тканями.
- •47. Регуляция дыхания. Функциональная связь процессов дыхания, жевания, глотания. Резервные возможности системы дыхания.
- •Основные виды (кибернетические) регуляции дыхания
- •Центральный механизм дыхания
- •Дыхательные центры ствола головного мозга
- •Дыхательные нейроны
- •Гуморальные факторы, участвующие в регуляции дыхания
- •Процессы, обеспечивающие пищеварение
- •Типы пищеварения
- •Основные процессы, обеспечивающие пищеварение являются:
- •Конвейерный принцип организации пищеварения
- •Пищеварение в полости рта. Жевание. Слюна, её состав и свойства. Глотание.
- •Регуляция жевания
- •Значение (функции) слюны
- •Состав и свойства слюны.
- •Глотание
- •Фазы глотания :
- •Пищеварение в желудке: моторика, секреция, гидролиз, всасывание. Регуляция пищеварения в желудке. Моторная функция желудка Виды моторики:
- •Моторика разных отделов желудка:
- •Регуляция моторики желудка
- •Секреторная функция желудка
- •Кардиальные
- •Пилорические
- •Переваривание (гидролиз пищи)
- •Гидролиз
- •Типы двигательной активности мышечного слоя тонкого кишечника:
- •Основной миогенный ритм
- •Гидролиз и всасывание белков Ферментативный гидролиз.
- •Переваривание и всасывание жиров
- •Всасывание продуктов гидролитического расщепления жиров
- •Внутриклеточный синтез липидов
- •Образование хиломикронов
- •Переваривание углеводов
- •Ферментативный гидролиз.
- •Всасывание моносахаридов
- •Всасывание других электролитов
- •Всасывание воды
- •Роль поджелудочной железы в пищеварении. Состав и свойства поджелудочного сока. Регуляция панкреатической секреции. Образование, состав и свойства поджелудочного сока
- •Ферменты сока поджелудочной железы:
- •Секреция электролитов поджелудочной железой человека Состав сока поджелудочной железы как функция скорости его течения после стимуляции секретином
- •Роль печени в пищеварении. Жёлчеобразование и жёлчевыведение. Регуляция образования желчи и ее выделения в двенадцатиперстную кишку. Клеточный состав печени (основные клеточные типы)
- •Функции гепатоцитов
- •Пищеварение в толстой кишке. Значение микрофлоры кишечника. Дефекация.
- •Моторика толстого кишечника
- •Эвакуация
- •Регуляция моторики толстого кишечника
- •Переваривание и всасывание
- •Бактериальный гидролиз
- •Микрофлора кишечника
- •Дефекация и диарея
- •Методы исследования различных этапов пищеварения в эксперименте и клинике.
- •56. Система выделения, её участие в поддержании гомеостаза.
- •57. Почки. Роль почек в гомеостазе. Нефрон как морфофункциональная единица почки. Особенности кровообращения в почке. Основные процессы мочеобразования.
- •Кровообращение в почке, особенности его регуляции
- •Механизм саморегуляции почечного кровотока
- •Способы регуляции почкой регионарного и системного кровотока и артериального давления
- •58. Клубочковая фильтрация: механизм, методы исследования.
- •59. Канальцевая секреция в почках: механизмы, методы исследования.
- •60. Канальцевая реабсорбция в почках: механизмы, методы.
- •61. Поворотно-противоточная система в почках. Работа почек в режимах диуреза и антидиуреза.
- •62. Мочеиспускание. Механизмы, регуляция, методы исследования.
- •Метаболизм, катаболизм, анаболизм. Обмен белков, жиров и углеводов в организме.
- •Пластическое значение белка.
- •Энергетическое значение
- •Азотистый баланс
- •Регуляция обмена белков.
- •Жировой обмен
- •Регуляция обмена жиров.
- •Изменения углеводов в организме.
- •Регуляция обмена углеводов.
- •Энергетический баланс организма. Основной и рабочий обмен. Методы исследования энергетического обмена. Прямая и непрямая калориметрия.
- •Газовый анализ при калориметрии (полный, неполный). Калорический коэффициент кислорода. Дыхательный коэффициент.
- •Пластическая и энергетическая роль питательных веществ
- •Потребность в питательных веществах, минеральных солях и витаминах в зависимости от вида труда, возраста и состояния организма.
- •68. Изотермия у человека. Гипотермия. Гипертермия. Температура человека и её суточные колебания. Терморецепция. Химическая терморегуляция. Физическая терморегуляция. Термометрия, термовизиография.
- •Температура тела
- •Суточные колебания температуры тела
- •Гипотермия и гипертермия
- •69. Гуморальная регуляция. Организация эндокринной системы. Методы изучения желез внутренней секреции.
- •Местная регуляция
- •Структурно-функциональная организация эндокринной системы
- •70. Гормоны: понятие, функции, классификация, механизм действия.
- •Классификация гормонов по химической природе:
- •Механизм действия гормонов
- •Механизм действия гормонов, взаимодействующих с рецепторами, локализованными на плазматической мембране
- •71. Гипотоламо-гипофизарная система.
- •72. Щитовидная железа. Тиреоидные гормоны, их значение в регуляции обмена веществ и энергии, роста и развития организма
- •73. Кальцитонин, его роль в регуляции минерального обмена в твердых тканях.
- •74. Околощитовидные железы.
- •75. Эндокринная функция поджелудочной железы. Роль ее гормонов в регуляции обмена б.,ж.,у.
- •76. Надпочечники. Гормоны коркового и мозгового слоя.
- •77. Половые железы. Мужские и женские половые гормоны, их роль в регуляции обмена веществ и функций организма. Половые циклы. Эндокринная функция плаценты
- •78. Эпифиз. Роль его гормонов.
- •79. Автономная нервная система, её структурно-функциональные особенности. Симпатический, парасимпатический, метасимпатический отделы.
- •Дуга автономного рефлекса
- •80. Роль цнс в приспособительной деятельности организма. Нейрон как структурно-функциональная единица цнс. Функциональные элементы мозга. Глия, её функции. Исследование цнс.
- •81. Распространение возбуждения в нервных центрах. Пространственная и временная суммация. Облегчение, окклюзия. Доминанта.
- •82. Торможение в нервной системе. Центральное торможение
- •83. Спинной мозг.
- •84. Продолговатый мозг и мост.
- •85. Средний мозг.
- •Ретикулярная формация. Особенности нейронной организации и функций ретикулярной формации ствола мозга.
- •Таламус — коллектор афферентных путей. Функциональная характеристика ядер таламуса. Таламо-кортикальные и кортико-таламические связи.
- •Лимбический мозг. Его роль в осуществлении функций, направленных на сохранение вида, индивидуума, участие в формировании мотиваций, эмоций, памяти, саморегуляции вегетативных функций.
- •Базальные ядра. Роль в формировании мышечного тонуса и сложных двигательных актов, в реализации двигательных программ и организации высших психических функций.
- •Кора полушарий большого мозга. Роль коры в формировании системной деятельности организма. Представление о кортикализации функций в процессе эволюции цнс.
- •93. Сенсорные системы. Структурно-функциональная организация анализаторов. Классификация рецепторов. Рецепторный и регенераторный потенциал.
- •Общая схема строения сенсорных систем
- •Свойства рецепторных потенциалов.
- •Свойства генераторных потенциалов.
- •94. Светопроводящие структуры глазного яблока. Рефракция. Астигматизм. Аберрация. Аккомодация.
- •Рефракция
- •95. Фоторецепция в сетчатке глазного яблока.
- •96. Цветовое зрение.
- •97. Методы исследования зрительного аппарата. Поле зрения. Острота зрения.
- •98. Слуховой анализатор
- •Вестибулярный анализатор. Роль в оценке положения тела в пространстве при его перемещении и в состоянии невесомости. Тренировка вестибулярного аппарата.
- •Обонятельный анализатор. Классификация запахов, теория их восприятия. Методы исследования. Ольфактометрия.
- •Вкусовой анализатор. Вкусовые ощущения, их классификация. Методы исследования вкусового анализатора. Пороговая густометрия, функциональная мобильность.
- •Боль. Ноцицепция. Биологическое значение боли. Антиноцицептивная система. Общие представления об обезболивании и наркозе.
- •Факторы, вызывающие боль
- •Типы боли
- •Теории боли
- •Теория специфичности боли
- •Ноцицептивные теории интенсивности и распределения импульсов
- •Теория воротного контроля
- •Экзогенное торможение боли; терапия при болях
- •Фармакологические
- •Физические
- •Психологические
- •Врожденные формы поведения (безусловные рефлексы и инстинкты), их значение для приспособительной деятельности организма. Мотивации.
- •Врожденные формы поведения
- •Высшая нервная деятельность (и.П. Павлов). Условный рефлекс: классификаци, механизмы образования, структурно-функциональная основа.
- •Классификация условных рефлексов
- •Механизм образования условного рефлекса
- •Условия выработки условных рефлексов
- •Стадии образования условного рефлекса:
- •Торможение в высшей нервной деятельности. Безусловное и условное торможение, их виды. Виды торможения
- •Типы высшей нервной деятельности животных и человека (и.П. Павлов), их классификация, характеристика, методы определения. Темпераменты (Гиппократ), психологические характеристики личности.
- •Частные типы высшей нервной деятельности
- •Психические функции человека; внимание, восприятие, память, эмоции, мышление, речь. Физиологические основы и методики исследования психических функций.
- •Формы психических явлений
- •Развитие психики человека
- •Методы исследования психических функций:
- •Функциональные изображения
- •4. Клинические методы
- •5. Психологические
- •Ощущение и восприятие
- •Память Виды памяти
- •Фазы работы памяти:
- •Эмоции и мотивации Фундаментальные эмоции (к.Изер):
- •Мышление, сознание.
- •Основные состояния сознания:
- •Память, её виды и механизмы. Виды памяти
- •Фазы работы памяти:
- •Характеристики памяти
- •Нарушение памяти
- •Эмоции. Классификация. Теории эмоций. Роль различных структур мозга в формировании эмоциональных состояний. Эмоциональный стресс.
- •Фундаментальные эмоции:
- •Сознание
- •Основные состояния сознания:
- •Подсознание
- •Сверхсознание
- •Речь. Функции речи. Функциональная асимметрия коры больших полушарий, связанная с развитием речи. Физиологические методы исследования речи.
- •Бодрствование. Сон: виды, фазы, профиль. Полисомнография. Сновидения. Физиологические основы гипнотических состояний.
- •Понятие «биологический ритм»
- •Классификация биологических ритмов
- •Характеристики биоритма
- •Циркадианные ритмы у человека
- •Ультрадианные ритмы у человека
- •Инфрадианные ритмы у человека
- •Биологические часы
- •Физиология адаптации. Индивидуальная адаптация организма. Виды, фазы и критерии адаптации. Эустресс, дистресс.
- •Репродуктивная функция женщин. Овариально-менструальный цикл. Беременность. Роды. Лактация.
- •116. Репродуктивная функция мужчин.
80. Роль цнс в приспособительной деятельности организма. Нейрон как структурно-функциональная единица цнс. Функциональные элементы мозга. Глия, её функции. Исследование цнс.
Центральная нервная система - спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок - регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности.
ЦНС связана со всеми органами и тканями через периферическую нервную систему, которая у позвоночных включает черепно-мозговые нервы, отходящие от головного мозга, и спинномозговые нервы — от спинного мозга, межпозвонковые нервные узлы, а также периферический отдел вегетативной нервной системы — нервные узлы, с подходящими к ним (преганглионарными) и отходящими от них (постганглионарными) нервными волокнами. Чувствительные, или афферентные, нервные приводящие волокна несут возбуждение в ЦНС от периферических рецепторов; по отводящим эфферентным (двигательным и вегетативным) нервным волокнам возбуждение из ЦНС направляется к клеткам исполнительных рабочих аппаратов (мышцы, железы, сосуды и т. д.). Во всех отделах ЦНС имеются афферентные нейроны, воспринимающие приходящие с периферии раздражения, и эфферентные нейроны, посылающие нервные импульсы на периферию к различным исполнительным эффекторным органам. Афферентные и эфферентные клетки своими отростками могут контактировать между собой и составлять двухнейронную рефлекторную дугу, осуществляющую элементарные рефлексы (например, сухожильные рефлексы спинного мозга). Но, как правило, в рефлекторной дуге между афферентными и эфферентными нейронами расположены вставочные нервные клетки, или интернейроны.
Спинной мозг находится в позвоночном канале и имеет вид белого тяжа. По передней и задней поверхности спинного мозга расположены продольные борозды. В центре проходит спинно-мозговой канал, вокруг него сосредоточено серое вещество — скопление огромного количества нервных клеток, образующих контур бабочки.
Белое вещество спинного мозга образует проводящие пути, которые тянутся вдоль спинного мозга, соединяя как отдельные его сегменты друг с другом, так и спинной мозг с головным. Одни проводящие пути называются восходящими или чувствительными, передающими возбуждение в головной мозг, другие — нисходящими или двигательными, которые проводят импульсы от головного мозга к определённым сегментам спинного мозга. Они выполняют две функции — рефлекторную и проводниковую. Деятельность спинного мозга находится под контролем головного мозга, который регулирует спинномозговые рефлексы.
Головной мозг. Состоит он из 5-ти отделов: переднего, промежуточного, среднего, заднего и продолговатого мозга. Внутри головного мозга находятся 4 сообщающиеся между собой полости — мозговые желудочки. Они заполнены спинномозговой жидкостью. Филогенетически более древняя часть — ствол головного мозга. Ствол включает продолговатый мозг, варолиев мост, средний и промежуточный мозг. 12 пар черепных нервов лежат в стволе мозга. Стволовая часть мозга прикрыта полушариями головного мозга.
Продолговатый мозг — продолжение спинного мозга и повторяет его строение; на передней и задней поверхности залегают борозды. Он состоит из белого вещества, где рассеяны скопления серого вещества — ядра, от которых берут начало черепные нервы — с 9 по 12-ю пару.
Задний мозг включает варолиев мост и мозжечок. Варолиев мост снизу ограничен продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние ножки мозжечка. Мозжечок расположен сзади моста и продолговатого мозга. Поверхность его состоит из серого вещества (кора). Под корой — ядра.
Средний мозг расположен впереди варолиева моста, он представлен четверохолмием и ножками мозга. Промежуточный мозг занимает самое высокое положение и лежит спереди ножек мозга. Состоит из зрительных бугров, надбугорной, подбугорной области и коленчатых тел. По периферии промежуточного мозга находится белое вещество. Передний мозг состоит из сильно развитых полушарий и соединяющей их срединной части. Борозды делят поверхность полушарий на доли; в каждом полушарии различают 4 доли: лобную, теменную, височную и затылочную.
Нейроны — специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний — синапсов. Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков — нейромедиаторов (нейротрансмиттеры): ацетилхолина, катехоламинов и др. Размеры нейронов колеблются от 6 до 120 мкм. На одном нейроне может быть до 10 000 синапсов. Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, организующие единую функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию. Клеточные скопления образуют серое вещество мозга. Между ядрами, группами клеток и между отдельными клетками проходят миелинизированные или немиелинизированные волокна: аксоны и дендриты.
Строение нейрона. Функционально в нейроне выделяют следующие части: воспринимающую — дендриты, мембрана сомы нейрона; интегративную — сома с аксонным холмиком; передающую — аксонный холмик с аксоном. Тело нейрона, помимо информационной, выполняет трофическую функцию относительно своих отростков и их синапсов. Мембрана нейрона имеет толщину б нм и состоит из двух слоев липидных молекул, которые своими гидрофильными концами обращены в сторону водной фазы: один слой молекул обращен внутрь, другой — кнаружи клетки. Гидрофобные концы повернуты друг к другу — внутрь мембраны. Белки мембраны встроены в двойной липидный слой и выполняют несколько функций: белки-"насосы" обеспечивают перемещение ионов и молекул против градиента концентрации в клетке; белки, встроенные в каналы, обеспечивают избирательную проницаемость мембраны; рецепторные белки распознают нужные молекулы и фиксируют их на мембране; ферменты, располагаясь на мембране, облегчают протекание химических реакций на поверхности нейрона. Рибосомы располагаются, как правило, вблизи ядра и осуществляют синтез белка на матрицах тРНК. Базофильное вещество (вещество Ниссля, тигроидное вещество, тигроид) — трубчатая структура, покрытая мелкими зернами, содержит РНК и участвует в синтезе белковых компонентов клетки. Длительное возбуждение нейрона приводит к исчезновению в клетке базофильного вещества, а значит, и к прекращению синтеза специфического белка. Нейротрубочки пронизывают сому нейрона и принимают участие в хранении и передаче информации. Ядро нейрона окружено пористой двухслойной мембраной. Через поры происходит обмен между нуклеоплазмой и цитоплазмой. Ядрышко содержит большое количество РНК, покрыто тонким слоем ДНК Дендриты — основное воспринимающее поле нейрона. Мембрана дендрита и синаптической части тела клетки способна реагировать на медиаторы, выделяемые аксонными окончаниями изменением электрического потенциала. Обычно нейрон имеет несколько ветвящихся дендритовАксон представляет собой вырост цитоплазмы, приспособлен¬ный для проведения информации, собранной дендритами, перера¬ботанной в нейроне и переданной аксону через аксонный холмик — место выхода аксона из нейрона. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиновую оболочку, образованную из глии. Аксон имеет разветвленные окончания. В окончаниях находятся митохондрии и секреторные образования.
Типы нейронов. Строение нейронов в значительной мере соответствует их функциональному назначению. По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные. Истинно униполярные нейроны находятся только в мезэнцефалическом ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц.
Другие униполярные нейроны называют псевдоуниполярными, на самом деле они имеют два отростка (один идет с периферии от рецепторов, другой — в структуры центральной нервной системы). Оба отростка сливаются вблизи тела клетки в единый отросток. Все эти клетки располагаются в сенсорных узлах: спинальных, тройничном и т. д. Они обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, бароцептивной, вибрационной сигнализации. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Биполярные нейроны дендритом связаны с рецептором, аксоном — с нейроном следующего уровня организации соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они представляют разновидности веретенообразных, звездчатых, корзинчатых и пирамидных клеток.
Классификация нейронов. Существует классификация нейронов, учитывающая химическую структуру выделяемых в окончаниях их аксонов веществ: холинергические, пептидергические, норадреналинергические, дофаминергические, серотонинергические и др. По чувствительности к действию раздражителей нейроны делят на моно-, би-, полисенсорные.
Моносенсорные нейроны. Располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на световое раздражение сетчатки глаза.
Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зрительные и слуховые раздражения.
Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.
Фоновоактивные нейроны делятся на тормозящиеся — урежающие частоту разрядов и возбуждающиеся — учащающие частоту разрядов в ответ на какое-либо раздражение. Фоновоактивные нейроны могут генерировать импульсы непрерывно с некоторым замед¬лением или увеличением частоты разрядов — это первый тип ак¬тивности — непрерывно-аритмичный.
Афферентные нейроны — нейроны, воспринимающие информацию.
Вставочные нейроны, или интернейроны, обрабатывают информацию, получаемую от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Тормозные вставочные нейроны возбуждаются прямыми сигналами, идущими в их собственный центр, или сигналами, идущими из того же центра, но по обратным связям. Прямое возбуждение тормозящих вставочных нейронов характерно для промежуточных центров афферентных спиноцеребральных путей.
Эфферентные нейроны нервной системы — это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы.
Нейроглия, или глия, — совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы. Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3—4 раза меньше, чем нервные; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается. Различают несколько видов нейроглии, каждая из которых об¬разована клетками определенного типа: астроциты, олигодендроциты, микроглиоциты.
Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Размеры астроцитов 7—25 мкм. Астроциты располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохондрии. Считают, что астроциты служат опорой нейронов, обеспечивают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полностью покрывая их. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно.
Олигодендроциты — клетки, имеющие малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендроцитов больше, чем в коре. Олигодендроциты участвуют в миелинизации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.
Микроглия представлена самыми мелкими многоотростчатыми клетками глии, относящимися к блуждающим клеткам. Источником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.
Нормальные физиологические процессы в нервной системе во многом зависят от степени миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается олигодендроцитами, а в периферической — леммоцитами (шванновские клетки).Глиальные клетки не обладают импульсной активностью, подобно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал, который отличается большой инертностью.
Физиологические методы исследования функций ЦНС. Клинические методы исследования ЦНС.
Функции нервной системы изучают с использованием традиционных классических для общей физиологии методов и специальных методических подходов, призванных выявить специфические функции нервных образований, выполняющих роль главной управляющей и информационной системы в организме. В соответствии с двумя принципиально различными методическими подходами к изучению физиологических функций организма различают методы экспериментальной и теоретической нейрофизиологии.
К числу экспериментальных методов классической физиологии относятся приемы, направленные на активацию, или стимуляцию, подавление, или угнетение, функции данного нервного образования. Способы активированияизучаемого органа сводятся к раздражению его адекватными (или неадекватными) стимулами. Адекватное раздражение достигается специфическим раздражением соответствующих рецептивных входов рефлексов либо электрическим раздражением проводникового или центрального отдела рефлекторной дуги, имитирующим нервные импульсы. Среди неадекватных стимулов наиболее распространенными являются раздражение различными химическими веществами и градуируемое раздражение электрическим током.
Подавление функции вплоть до полного выключения достигается частичным или полным удалением (экстирпация), разрушением изучаемого нервного образования, кратковременным блокированием передачи возбуждения под действием химического вещества, холодового фактора или анода постоянного тока (анэлектротон, распространяющаяся депрессия), денервацией органа.
Развитие и совершенствование электронной и усилительной техники значительно повышают возможности метода регистрации и анализа электрических проявлений деятельности нервных структур. Регистрация электрических потенциалов головного мозга (электроэнцефалография) с последующим автоматизированным анализом с помощью средств вычислительной техники становится одним из важнейших методов исследования в нейрофизиологии мозга. Развитие микротехники отведения электрических потенциалов отдельных нервных клеток или даже частей клетки (микроэлектродная техника) за последние два-три десятилетия существенно обогатило ценными экспериментальными фактами физиологию мозга.
При изучении биофизических аспектов деятельности нервных клеток и исследовании нейрогуморальных регуляторных систем, включая гематоэнцефалический барьер, цереброспинальную жидкость, широко используются радиоизотопные методы.
Классический условнорефлекторный метод изучения функции коры большого мозга в современной нейрофизиологии успешно применяется в комплексном анализе механизмов обучения, становления и развития адаптивного поведения в сочетании с методами электроэнцефалографии, электронейронографии, нейро- и гистохимии, психофизиологии, способствуя более полному представлению физиологической сущности протекающих в мозге процессов.
В познании механизмов работы мозга в последнее время возрастает роль методов теоретической физиологии, в частности методов моделирования (физического, математического, концептуального). Под моделью обычно понимают искусственно созданный механизм, имеющий определенное подобие с данным рассматриваемым механизмом. Модель как исследовательский инструмент отражает наиболее существенные черты моделируемого объекта, не перегружая его подробными деталями, тем самым несколько упрощая объект исследования. Одним из постулатов теоретической нейрофизиологии является утверждение о сходстве по аналогии. Два механизма считаются аналогичными, если органы, соответствующие один другому, выполняют одну и ту же функцию. Из аналогии двух механизмов делается заключение о том, что функции одного механизма присущи и другому, у которого наличие таких функций экспериментально еще не установлено.
В системе научного познания психофизиологической сущности деятельности мозга трудно переоценить роль такого метода теоретической нейрофизиологии, как выдвижение, обоснование и проверка, верификация рабочей гипотезы. Практически использование любого метода физиологического исследования неразрывно связано с выдвижением и разработкой гипотезы — некоторого предположения, являющегося логическим развитием системы суждений и умозаключений, призванных объяснить имеющийся материал наблюдений и экспериментов. С учетом трудность, порой и недопустимость прямых экспериментальных вмешательств в структуры мозга человека, становится понятной чрезвычайно важная роль теоретического метода в физиологии мозга.