- •1 Общие понятия
- •Предмет и задачи дисциплины
- •1.2 Общие сведения об электроприемниках, электрических и электронных аппаратах
- •1.3 Классификация электрических аппаратов
- •1.4 Внешние воздействия на электрические аппараты
- •1.4.1 Воздействие климатических факторов
- •1.4.2 Защитные оболочки электрических аппаратов
- •1.5 Требования предъявляемые к электрическим аппаратам
- •1.6 Основные материалы применяемые в аппарато-строении Проводниковые материалы
- •2.1 Классификация электрических схем
- •2.2 Однолинейное и многолинейное изображение принципиальных электрических схем
- •2.3 Условное изображение электрических аппаратов и других элементов электрических схем
- •3 Основы теории электрических аппаратов
- •3.1 Электродинамические, индукционные и электромагнитные явления в электрических аппаратах
- •Определение направления эду
- •Частные случаи определение величины и направления эду
- •3.1.2 Электродинамические усилия при переменном токе
- •3.1.3 Электродинамическая стойкость аппаратов
- •3.2 Нагрев и охлаждение электрических аппаратов
- •3.2.2 Активные потери энергии в электрических аппаратах
- •3.2.3 Способы передачи тепла внутри нагретых тел и с их поверхности
- •3.2.4 Установившийся режим нагрева
- •3.2.5 Нагрев аппаратов в переходных режимах
- •3.2.6 Термическая стойкость
- •3.3 Понятие коммутации электрических цепей
- •3.4 Электрические контакты в электрических аппаратах
- •3.4.1 Общие сведения
- •3.4.2 Режимы работы контактов
- •3.4.3 Материалы контактов
- •3.4.4 Конструкции твердометаллических контактов
- •3.4.5 Жидкометаллические контакты
- •3.5 Электрическая дуга постоянного и переменного тока в электрических аппаратах
- •3.5.1 Общие сведения
- •3.5.2 Дуга постоянного тока
- •3.5.3 Перенапряжения при отключении дуги постоянного тока
- •3.5.4 Динамическая вольт-амперная характеристика дуги
- •3.5.5 Дуга переменного тока
- •3.6 Способы гашения дуги
- •3.6.1 Воздействие на столб электрической дуги
- •3.6.2 Перемещение дуги под воздействием магнитного поля
- •3.6.3 Гашение дуги с помощью дугогасительной решетки
- •3.6.4 Гашение дуги высоким давлением
- •3.6.5 Гашение электрической дуги в потоке сжатого газа
- •3.6.6 Гашение дуги в трансформаторном масле
- •3.6.7 Гашение дуги в вакуумной среде
- •3.6.8 Гашение дуги с помощью полупроводниковых приборов
- •3.7 Электромагнитные механизмы в электрических аппаратах
- •4.1.2 Кулачковые контроллеры
- •4.1.3 Плоские контроллеры
- •4.2 Командоаппараты
- •4.2.1 Кнопки управления
- •4.2.2 Командоконтроллеры
- •4.3 Путевые выключатели, переключатели и микровыключатели
- •4.4 Реостаты
- •4.5 Контакторы и магнитные пускатели
- •4.5.1 Общие сведения
- •4.5.2 Контакторы с прямоходовым механизмом
- •4.5.3 Контакторы постоянного тока с поворотным механизмом
- •4.5.4 Контакторы переменного тока с поворотным механизмом
- •4.5.5 Магнитные пускатели
- •4.6 Электрические реле
- •4.6.1 Общие сведения
- •4.6.2 Классификация электрических реле
- •4.6.3 Характеристики реле
- •4.6.4 Требования предъявляемые к реле
- •4.6.5 Электромагнитные реле тока и напряжения
- •4.6.6 Тепловые реле
- •4.6.7 Выбор максимально-токовых реле
- •4.6.8 Выбор тепловых реле
- •4.6.9 Электромеханические реле времени
- •4.6.10 Герконовые реле
- •4.6.11 Фотоэлектрические реле
- •4.6.12 Полупроводниковые реле
- •4.6.13 Микропроцессорные реле
- •5 Аппараты распределительных устройств низкого напряжения
- •5.1 Рубильники и переключатели
- •5.2 Предохранители
- •5.2.1 Общие сведения
- •5.2.1 Конструкции предохранителей
- •5.2.3 Выбор предохранителей
- •5.2.4 Высоковольтные предохранители
- •5.3 Автоматические выключатели
- •5.3.1 Общие сведения
- •5.3.2 Классификация автоматических выключателей
- •5.3.3 Токоведущая цепь и дугогасительная система автоматических выключателей
- •5.3.4 Приводы автоматических выключателей
- •5.3.5 Расцепители автоматических выключателей
- •5.3.6 Пример конструкции автоматического выключателя
- •5.3.7 Время-токовые характеристики автоматических выключателей
- •5.3.8 Выбор автоматических выключателей
- •5.4 Карты селективности защит низкого напряжения
- •5.4.1 Уровни электроснабжения
- •5.4.2 Что такое селективность
- •5.4.3 Что такое карта селективности
- •5.4.4 Построение время-токовых характеристик
- •5.5 Разрядники и нелинейные ограничители пренапряжения
- •5.5.1 Основные сведения
- •5.5.2 Конструкции разрядников
- •5.5.3 Нелинейные ограничители перенапряжения
- •5.5.4 Параметры ограничителей перенапряжения
- •5.5.5 Узип
- •5.5.6 Выбор опн
- •5.6 Устройства защитного отключения
- •5.6.1 Системы заземления электроустановок
- •5.6.2 Общие сведения
- •5.6.3 Устройство и принцип действия узо
- •5.6.4 Основные параметры узо
- •5.6.5 Выбор узо
- •6 Электронные электрические аппараты
- •6.1 Полупроводниковые элементы (диоды, транзисторы, тиристоры и др.) их основные характеристики в ключевых режимах работы
- •6.1.1 Релейный режим работы полупроводникового усилителя
- •6.2 Основные элементы и функциональные узлы систем управления электронных аппаратов
- •6.3 Микропроцессоры в системах управления (функции и структурные схемы) Логические элементы
- •6.4 Прерыватели и регуляторы постоянного и переменного тока
- •6.4.1 Бесконтактные коммутирующие и регулирующие полупроводниковые устройства переменного тока Общие сведения
- •Устройства плавного пуска
- •Частотные преобразователи
- •7 Низковольтные комплектные устройства
- •7.1 Типовые схемы низковольтных комплектных устройств
- •7.2 Типовые схемы управления электроприемниками с асинхронными двигателями
3.6.8 Гашение дуги с помощью полупроводниковых приборов
Это бесконтактная коммутация с помощью тиристоров и симисторов. В высоковольтных аппаратах тиристоры включаются последовательно.
3.7 Электромагнитные механизмы в электрических аппаратах
Электромагниты широко применяются в таких электрических аппаратах, как контакторы, пускатели, реле, автоматы, электромагнитные муфты и т.д.
Клапанная система.
Подвижная часть магнитной цепи, создающая рабочее усилие называется якорем 1. Участки магнитопровода 3 и 4 называют стержнями ли сердечниками. В клапанной системе якорь может иметь как поступательное, так и вращательное движение.
При прохождении тока по намагничивающей катушке 2 создается МДС, под действием которой возбуждается магнитный поток Ф. Этот поток замыкается как через зазор δ (рабочий зазор), так и между другими частями магнитной цепи, имеющими различные магнитные потенциалы. Все потоки, которые не проходят через рабочий зазор называются потоками рассеяния.
В зависимости от способа включения обмотки, различают: обмотки напряжения и обмотки тока.
Важным параметром материала магнитопровода является индукция насыщения. Тяговое усилие электромагнита пропорционально квадрату индукции. Поэтому чем выше индукция насыщения, тем больше тяговое усилие электромагнита при тех же размерах.
После обесточивания обмотки электромагнита в магнитной системе существует остаточный магнитный поток, который определяется коэрцетивной силой материала магнитопровода и проводимостью рабочего зазора. Остаточный магнитный поток может оказаться таким, что произойдет так называемое залипание якоря. Поэтому требуется чтобы материала обладал низкой коэрцетивной силой.
Материалы магнитопроводов в электромагнитах переменного тока должны иметь малые потери на вихревые токи и гистерезис. Магнитопроводы выполняются шихтованными из пластин.
После включения обмотки электромагнита происходит нарастание магнитного потока до тех пор, пока сила тяги не станет равна противодействующей силе. После этого якорь начинает двигаться, при этом ток и магнитный поток будут изменяться. После достижения якорем конечного положения ток и магнитный поток будут продолжать изменяться до тех пор, пока не достигнут установившихся значений. Время срабатывания электромагнита состоит из времени трогания (время с начала подачи напряжения до начала движения якоря) и времени движения.
При размыкании цепи обмотки электромагнита магнитный поток в нем начинает уменьшаться из-за введения в цепь большого сопротивления дугового или тлеющего разряда между контактами. Магнитный поток уменьшается и в момент, когда сила тяги электромагнита становится меньше усилия пружины, происходит отпускание якоря. Время отпускания состоит из времени спада потока до потока отпускания и времени движения.
3.8 Способы ускорения и замедления срабатывания
Для изменения времени срабатывания воздействуют на время трогания.
Чем меньше активное сопротивление, тем быстрее будет срабатывать электромагнит.
4 Аппараты управления
4.1 Контроллеры
Контроллером называется электрический аппарат с ручным управлением, предназначенный для изменения схемы подключения электрооборудования к электрической сети. По конструктивному исполнению контроллеры делятся на барабанные, кулачковые и плоские.
4.1.1 Барабанные контроллеры
На валу 1 укреплен сегментодержатель 2 с подвижным контактом в виде сегмента 3. Сегментодержатель изолирован от вала изоляцией 4. Неподвижный контакт 5 расположен на изолированной рейке 6. При вращении 1 сегмент 3 набегает на неподвижный контакт 5, чем осуществляется замыкание цепи. Необходимое контактное нажатие обеспечивается пружиной 7. На одном валу устанавливается ряд таких контактных элементов. Такие контроллеры применяются при редких включениях из-за малой износостойкости.
