
- •Содержание
- •Введение 1
- •1 Лазеры в технике связи 1
- •2 Применение лазеров в радиолокационных системах 31 Список использованных источников 35 Введение
- •1 Лазеры в технике связи
- •1.1 Системы связи оптического диапазона
- •1.2 Модуляционные устройства для оптической связи
- •1.2.1 Амплитудные модуляторы для внешней модуляции
- •1.2.2 Амплитудные модуляторы для внутренней модуляции.
- •1.2.3 Методы частотной модуляции лазеров.
- •1.3 Приёмники излучения
- •1.3.1 Детекторы оптического диапазона
- •1.4 Световодные линии связи
- •1.4.1 Основные типы световодов
- •1.4.2 Световые лучеводы
- •1.4.3 Волоконные волноводы
- •1.4.4 Газовые волноводы
- •1.4.5 Оптические микроволноводы
- •2 Применение лазеров в радиолокационных системах
- •Список использованных источников
1.2.2 Амплитудные модуляторы для внутренней модуляции.
В простейшем случае внутренняя AM осуществляется путем изменения энергии накачки. Например, в газовом лазере внутреннюю модуляцию можно осуществить, изменяя величину тока разряда через трубку. Недостатком такого метода AM является узкополосность. Значительно большей рабочей полосой частот обладают твердотельные лазеры с модулируемой накачкой.
Для осуществления внутренней амплитудной модуляции используют электрооптическую ячейку, помещаемую внутрь резонатора.
Управление коэффициентом усиления активной среды можно осуществить с помощью эффектов Зеемана и Штарка, обусловленных соответственно действием магнитного и электрических полей.
Коэффициент усиления изменяется при расщеплении энергетических уровней из-за деформации электронных орбит атомов. Предложены амплитудные модуляторы для внутренней модуляции с использованием эффекта Зеемана. Для модуляции можно использовать как продольный, так и поперечный эффект Зеемана. Недостаток модуляторов, использующих эффекты Зеемана и Фарадея, в трудности получения большого магнитного поля в широком диапазоне частот модулирующего сигнала.
Для получения
амплитудной модуляции может быть
использо
Особенно эффективна внутренняя модуляция для резкого изменения добротности резонатора, что широко используется для получения «гигантских» импульсов излучения.
Для получения «гигантских» импульсов цепь обратной связи включается и выключается с помощью «оптических затворов». Работа таких затворов основана на использовании электрических, магнитных, ультразвуковых эффектов и т. д. В качестве электрооптического затвора предложено использовать особое стекло. Предложен оптический «рефракционный затвор», основанный на отклонении светового луча при помощи ультразвуковой ячейки.
1.2.3 Методы частотной модуляции лазеров.
Частоту световой несущей можно регулировать за счет изменения резонансной частоты интерферометра Фабри—Перо. Это можно делать, например, с помощью пьезоэлементов, изменяющих оптическую длину резонатора. Это изменение в такт с изменением модулирующего сигнала приводит к перемещению максимума прозрачности резонатора по спектру и, следовательно, к генерированию света с той или иной длиной волны.
Частотная модуляция света может быть осуществлена на основе эффектов Зеемана и Штарка. Следует заметить, что модуляция с использованием этих эффектов обладает определенными недостатками. Прежде всего, для осуществления широкополосной модуляции требуются, очень сильные магнитные или электрические поля.
Для частотной модуляции может применяться ультразвуковая ячейка, помещенная внутрь резонатора лазера. Конструкция модулирующей ячейки аналогична конструкции амплитудного модулятора для внутренней AM.