- •!Шестиуровневая модель компьютера. (Способы поддержки уровней, по, объекты…)
- •Многоуровневая структура компьютера: языки, уровни и виртуальные машины
- •Современные многоуровневые компьютеры
- •Уровень 0: Цифровой логический уровень
- •Уровень 1: уровень Микроархитектуры
- •Уровень 2: уровень архитектуры набора команд
- •Уровень 3: уровень операционной системы
- •Уровень 4: уровень Ассемблера
- •Уровень 5: уровень языка прикладных программистов
- •!Вентили и булева алгебра (транзисторные схемы, значки, таблицы истинности…)
- •Вентили
- •Булева алгебра
- •Реализация булевых функций
- •Построение схемы с использованием одного типа вентилей.
- •Эквивалентность схем
- •!Устройство цп. Цикл выполнения команды (Упрощенная схема…)
- •Устройство центрального процессора
- •Выполнение команд
- •!Многоступенчатый конвейер.
- •!Организация (адресация) памяти.
- •Методы адресации
- •Адресное пространство
- •Исполнение программ
- •Кодирование адресов
- •Вычисление адресов
- •Индексация
- •!Исправление ошибок. Диаграмма Венна. Код Хэмминга.
- •!Описание и диаграмма полной микроархитектуры машины Mic-1.
- •!Микроархитектура процессора 8051
- •!Классификация архитектур м. Flynn (sisd, misd, simd, mimd).
- •!Поколения эвм
- •Основные этапы развития компьютеров
- •Нулевое поколение — механические компьютеры (1642-1945)
- •Первое поколение — электронные лампы (1945-1955)
- •Второе поколение — транзисторы (1955-1965)
- •Третье поколение — интегральные схемы (1965-1980)
- •Четвертое поколение — сверхбольшие интегральные схемы (1980-?)
- •Пятое поколение — невидимые компьютеры
- •Заключение
- •!Закон Мура
- •И стория
- •!Технология Интел «Тик-так»
- •«Тик-так» на дорожной карте Intel
- •!Одноразовые компьютеры. Rfid – системы
- •Что такое rfid?
- •Сфера применения rfid технологий
- •Развитие технологии rfid продолжается
- •!Микроконтроллеры. Функциональная схема.
- •Описание
- •Применение
- •Программирование
- •!Виды пк. Состав компьютерной системы.
- •Виды компьютеров по назначению
- •Универсальные компьютеры
- •Проблемно-ориентированные компьютеры
- •Специализированные компьютеры
- •Виды компьютеров по функциям и внешним параметрам
- •Настольный компьютер
- •Обычный настольный компьютер (десктоп, моноблок)
- •Стационарный нетбук (неттоп)
- •Переносной компьютер
- •Ноутбук (лэптоп)
- •Планшетный компьютер
- •Носимый компьютер (микрокомпьютер)
- •Автоматизированное рабочее место (арм)
- •Мейнфрейм
- •Суперкомпьютер
- •Шаг первый. Cisc
- •!Регистры. Обозначения. Регистр флагов (psw).
- •Операции
- •Регистр флагов
Мейнфрейм
У данного вида компьютеров два значений:
1) Компьютер высокой производительности, обладающий огромным объемом памяти, как внешней, так и оперативной. Используется как архив хранения информации, либо для высоко требовательных вычислений.
2) Главный компьютер сети, используемый в качестве центрального сервера при крупной организации сети. Может управлять нижестоящими серверами с высокой эффективностью. Отличительная особенность мейнфрейма - исключительная надежность, сопряженная с длительным периодом работы (10-25 лет) при высокой скорости обмена данными и одновременной обработкой множества процессов.
Суперкомпьютер
Монструозный компьютер, состоящий из объединенных скоростной локальной сетевой магистралью, высоко мощных серверных машин. Думаю, не стоит упоминать, что позволить себе такой вид компьютера, могут только крупнейшие транснациональные корпорации да крупные государственные структуры (военная, научная, промышленная отрасль). В отличие от мейнфреймов, суперкомпьютеры ориентированы не на поток одновременных скоростных процессов, а на сверх производительные вычисления, опирающиеся на мощнейшие процессоры и оперативную память (например, моделирование ядерных процессов, космических моделей).
Игровые приставки
Имеет строение, похожее на настольные компьютеры, но строго ограничен набором функций. Главное назначение - воспроизводить компьютерные игры, хотя современные модели дают возможность прослушать музыку, проиграть фильм или присоединиться к интернету. Данный вид компьютера не имеет своего дисплея, поэтому нуждается в устройстве вывода видеосигнала (телевизор, монитор).
Многопроцессорные компьютерные системы (МПКС). Архитектура Google.
Приемы повышения производительности МПКС (Репликация и др.)
!CISC и RISC архитектуры.
В семидесятых годах прошлого столетия проектирование и изготовление центральных процессоров было занятием, принципиально доступным каждому. Если какому-нибудь сотруднику, скажем, Стэндфордского университета приходила в голову интересная идея, он мог легко набрать команду, основать фирму, найти инвесторов и уже через год-два выбросить на рынок свои CPU.
Через тридцать с небольшим лет процессоры усложнились до такой степени, что разработка хоть сколько-нибудь быстрого по современным меркам кристалла требует огромной армии инженеров, гигантских инвестиций и целого моря времени. И дело здесь отнюдь не в тонких кремниевых технологиях и стоящих миллиарды долларов полупроводниковых фабриках - просто уже в восьмидесятых годах разработка принципиально нового CPU требовала двух-трех, а в девяностых - пяти-шести лет напряженной работы. Те же китайцы, даже располагая подробной информацией о тридцатилетней истории проектирования процессоров, владея новейшими фабриками по производству кремниевых кристаллов и не стремясь изобретать что-то новое, потратили на разработку собственного простейшего MIPS32-подобного процессора Godson (примерно эквивалентного по производительности i486) несколько лет. Это не считая еще одного года, когда новый кристалл отлаживали. А на разработку MIPS64-подобной архитектуры с приемлемой производительностью (~Pentium III 500–600 МГц) у китайской Академии наук ушло еще четыре года, - четыре года, потраченных только на то, чтобы повторить успех более чем двенадцатилетней давности. Но почему все получается так сложно? Чтобы ответить на этот вопрос нам придется вернуться на 30-40 лет в прошлое.
