Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mikra_ekzamen_otvet.doc
Скачиваний:
7
Добавлен:
01.07.2025
Размер:
711.68 Кб
Скачать

2. Бактериальная хромосома, ее упаковка в клетке. Формы обмена генетическим материалом у бактерий: конъюгация, трансформация, трансдукция, трансфекция и сексдукция.

Бактериальная хромосома представлена одной двухцепочечной молекулой ДНК кольцевой формы. Бактериальная хромосома формирует компактный нуклеоид бактериальной клетки. Бактериальная хромосома имеет гаплоидный набор генов. Она кодирует жизненно важные для бактериальной клетки функции.

Плазмиды бактерий представляют собой двухцепочечные молекулы ДНК. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преиму¬щества при попадании в неблагоприятные условия существования.

Помимо основного механизма передачи генов — по наследству (по вертикали), у бактерий существуют следующие формы обмена генетическим материалом по горизонтали, т. е. между отдельными особями в популяции клеток: трансформация, трансфекция, трансдукция, конъюгация и сексдукция.

1.Трансформация — перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чу¬жеродной ДНК. Трансформация может быть спонтанной или индуцированной. Ин¬дуцированная (искусственно получаемая) трансформация происходит при добавле¬нии к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре. Спон¬танная трансформация происходит в естественных условиях и проявляется в воз¬никновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, выделяющейся клетками в окружающую среду вслед-ствие их лизиса или в результате активного выделения ДНК жизнеспособными клет¬ками-донорами.

2.Трансфекция — вариант трансформации бактериальных клеток, лишенных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий (без клеточной стенки) вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактери¬альными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток, или воспроизводить вирионы, или самостоятельно реплицироваться.

3.Трансдукция — перенос генетического материала от клетки-донора клетке-ре¬ципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую.

Неспецифическая трансдукция — случайный перенос фрагментов ДНК от одной бактериальной клетки к другой.

Специфическая трансдукция осуществляется только умеренными фагами, обла¬дающими способностью включаться в строго определенные участки хромосомы бактериальной клетки и трансдуцировать определенные гены.

4.Конъюгация — это процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и ре¬ципиента. Процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном. Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление по¬верхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками.

5.Сексдукция — перенос генетического материала между бактериальными клет¬ками, осуществляемый F-плазмидой с помощью механизма, аналогичного специ¬фической транcдукции.

3. Конъюгативный механизм обмена генетическим материалом у бактерий. F-плазмиды, их роль, функции tra-оперона.

Конъюгация — это процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном. Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление по¬верхностного исключения.

Процесс конъюгации протекает через следующие стадии: установление контакта между донором и реципиентом, протаскивание нити ДНК от донора к реципиенту, достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке и рекомбинация между переданной хромосомой (ее фрагментами) и хромо¬сомой клетки-реципиента, размножение мерозиготы и образование клеток, несущих признаки донора и реципиента.

Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим приме¬ром конъюгативной плазмиды является половой фактор, или F-плазмида. Эта плазмида представляет собой двунитевую кольцевид¬ную молекулу ДНК, состоящую из 94,5 тыс. п. н.

Главная функция этой плазмиды — контроль конъюгации у бактерий кишечной группы. Ее tra-оперон содержит больше тридцати генов, которые контролируют процесс конъюгации. Эта плазмида может как находиться в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором F-клетка (клетка, лишен¬ная F-плазмиды) превращается в F-клетку (клетку, содержащую F-плазмиду).

5. Понятие о генотипе и фенотипе микроба. Категории изменчивости: наследственно закрепленная и фенотипическая. Мутации индуцированные и спонтанные. Молекулярные механизмы мутаций. Транспозируемые элементы и их роль в эволюции. Свойства микроор¬ганизмов, как и любых других организмов, определяются их генотипом, т.е. совокупностью генов данной особи. Термин «геном» в отношении микроорганизмов — почти синоним по¬нятия «генотип».

Фенотип представляет собой результат взаимодействия меж¬ду генотипом и окружающей средой, т. е. проявление генотипа в конкретных условиях обитания. Фенотип микроорганизмов хотя и зависит от окружающей среды, но контролируется генотипом, так как характер и степень возможных для данной клетки сте¬нотипических изменений определяются набором генов, каждый из которых представлен определенным участком молекулы ДНК.

В основе изменчивости лежит либо изменение реакции гено¬типа на факторы окружающей среды, либо изменение самого генотипа в результате мутации генов или их рекомбинации. В свя¬зи с этим фенотипическую изменчивость подразделяют на на¬следственную и ненаследственную.

Ненаследственная (средовая, модификационная) изменчивость обусловлена влиянием внутри- и внеклеточных факторов на про¬явление генотипа. При устранении фактора, вызвавшего моди¬фикацию, данные изменения исчезают.

Наследственная (генотипическая) изменчивость, связанная с мутациями, — мутационная изменчивость. Основу мутации со¬ставляют изменения последовательности нуклеотидов в ДНК, полная или частичная их утрата, т. е. происходит структурная пе¬рестройка генов, проявляющаяся фенотипически в виде изме¬ненного признака.

Наследственная изменчивость, связанная с рекомбинациями, называется рекомбинационной изменчивостью.

Под мутацией подразумеваются стабильные наследуемые изменения в генотипе, проявляющиеся фенотинически в виде измененного признака. Основу мутации составляют качественные или количественные изменения последовательности нуклеотидов в ДНК, которые могут возникать при жизнедеятельности бактерий под влиянием эндогенных факторов или при действии химических и физических мутагенов.

Различают так называемые спонтанные мутации, под которыми понимают мутации, причины возникновения которых неизвестны. Частота спонтанных мутаций мала.

При искусственном же воздействии различных физических и химических мутагенов частота мутаций возрастает, — эти мутации принято называть индуцированными.

Подвижные генетические элементы.

В состав бактериального генома, как в бак¬териальную хромосому, так и в плазмиды, входят подвижные генетические элементы. К подвижным генетическим элементам от¬носятся вставочные последовательности и транспозоны.

Вставочные (инсерционные) последова¬тельности IS-элементы — это участки ДНК, способные как целое перемещаться из одного участка репликона в другой, а также между репликонами. Они содержат лишь те гены, которые необходимы для их собственного перемещения — транс¬позиции: ген, кодирующий фермент транспозазу, обеспечивающую процесс исключения IS-элемента из ДНК и его интеграцию в но¬вый локус, и ген, детерминирующий синтез репрессора, который регулирует весь процесс перемещения.

Отличительной особенностью IS-элементов является наличие на концах вставочной последовательности инвертированных повто¬ров. Эти инвертированные повторы узнает фермент транспозаза. Транспозаза осуществляет одноцепочечные разрывы це¬пей ДНК, расположенных по обе стороны от подвижного элемента. Оригинальная копия IS-элемента остается на прежнем месте, а ее реплицированный дупликат перемещается на новый участок.

Перемещение подвижных генетических элементов принято называть репликативной или незаконной рекомбинацией. Однако в отличие от бактериальной хромосомы и плазмид подвижные генетические элементы не являются самостоятельными репликонами, так как их репликация — составной элемент репликации ДНК репликона, в составе кото¬рого они находятся.

Известно несколько разновидностей IS-элементов, которые различаются по раз¬мерам и по типам и количеству инвертиро¬ванных повторов.

Транспозоны — это сегменты ДНК, облада¬ющие теми же свойствами, что и IS-элементы, но имеющие структурные гены, т. е. гены, обеспечивающие синтез молекул, обладаю¬щих специфическим биологическим свойс¬твом, например токсичностью, или обеспечи¬вающих устойчивость к антибиотикам.

Перемещаясь по репликону или между реп¬ликонами, подвижные генетические элемен¬ты вызывают:

1. Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются.

2. Образование повреждений генетического материала.

3. Слияние репликонов, т. е. встраивание плазмиды в хромосому.

4. Распространение генов в популяции бак¬терий, что может приводить к изменению биологических свойств популяции, смене возбудителей инфекционных заболеваний, а также способствует эволюционным процес-сам среди микробов.

Изменения бактериального генома, а следо¬вательно, и свойств бактерий могут происхо¬дить в результате мутаций и рекомбинаций.

6. Плазмиды бактерий. Определение понятия. Классы плазмид. Характеристика R-плазмид, их значение, распространение среди бактерий.

Плазмиды — наипростейшие организмы, лишенные обологки, собствен¬ных систем синтеза белка и мобилизации энергии и представляющие собой особый класс абсолютных внутриклетогных паразитов, наделяющих своих бактерий-хозяев полезными для них свойствами. Плаз¬миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег¬рировать) в хромосому и реплицироваться вместе с ней. Разли¬чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив¬ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Плазмиды несут гены, не обязательные для клетки-хозя¬ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре¬менные преимущества по сравнению с бесплазмидными бакте¬риями.

Некоторые плазмиды находятся под стро¬гим контролем. Это означает, что их реплика¬ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс¬твует одна или, по крайней мере, несколько копий плазмид.

У бактерий различных видов обнаружены R-плазмиды, несу¬щие гены, ответственные за множественную устойчивость к лекарственным препаратам — антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, напри¬мер возбудителей чумы, столбняка, способность почвенных бак¬терий использовать необычные источники углерода, контроли¬ровать синтез белковых антибиотикоподобных веществ — бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз¬мов позволяет полагать, что аналогичные структуры широко рас¬пространены у самых разнообразных микроорганизмов.

Классификация плазмид по свойствам, которыми они наделяют своих носителей

1) F-плазмиды- донорные функции

2) R-плазмиды- устойчивость к лекарственным препаратам

3) Соl-плазмиды- синтез колицинов

4) Еnt-плазмиды- синтез энтеротоксинов

5) Нlу-плазмиды- Синтез гемолизинов

6) Биодеградативные плазмиды- разрушение различных органических и неорганических соединений, в том числе содержащих тяжелые металлы

7) Криптические плазмиды -неизвестны

В условиях широкого применения антибиотиков и других химиопрепаратов происходит естественный отбор тех штам¬мов патогенных бактерий, которые являются носителями R-плазмид. Среди них формируются новые эпидемические клоны патогенных бактерий. В настоящее вре¬мя они играют ведущую роль в эпидемиологии инфекционных болезней, и от их рас¬пространения во многом зависит эффективность антибиотико- и химиотерапии, а в итоге — здоровье и жизнь людей.

7. Лекарственная устойчивость микробов. Генетические и биохимические основы устойчивости бактерий к антибиотикам. Конъюгативные и неконъюгативные R-плазмиды, их основные свойства, механизмы передачи и значение.

--Биохимические основы устойчивости. Инактивация препарата бактериальными ферментами. Некоторые бактерии способны продуцировать особые ферменты, которые де¬лают препараты неактивными (например, бета-лактамазы, аминогликозид-модифицирующие ферменты, хлорамфениколацетилтрансфераза). Бета-лактамазы — это ферменты, разруша¬ющие бета-лактамное кольцо с образованием неактивных соединений. Гены, кодирующие эти ферменты, широко распространены среди бактерий и могут быть как в составе хромосо¬мы, так и в составе плазмиды.

Для борьбы с инактивирующим действием бета-лактамаз используют вещества — ин¬гибиторы (например, клавулановую кисло¬ту, сульбактам, тазобактам). Эти вещества содержат в своем составе бета-лактамное кольцо и способны связываться с бета-лактамазами, предотвращая их разрушитель¬ное действие на бета-лактамы. При этом собственная антибактериальная активность таких ингибиторов низкая. Клавулановая кислота ингибирует большинство известныхбета-лактамаз. Ее комбинируют с пеницил-линами: амоксициллином, тикарциллином, пиперациллином.

Предупредить развитие антибиотикорезистентности у бактерий практически не¬возможно, но необходимо использовать антимикробные препараты таким образом, чтобы не способствовать развитию и рас-пространению устойчивости (в частности, применять антибиотики строго по показа¬ниям, избегать их использования с профи¬лактической целью, через 10—15 дней ан-тибиотикотерапии менять препарат, по воз¬можности использовать препараты узкого спектра действия, ограниченно применять антибиотики в ветеринарии и не использо¬вать их как фактор роста).

--Генетические основы приобретенной резис¬тентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в попу¬ляции бактерий в результате:

• мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) му¬тантов.

• переноса трансмиссивных плазмид резис¬тентности (R-плазмид).

• переноса транспозонов, несущих r-гены

Разли¬чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив¬ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Существует несколько генетических меха¬низмов переноса плазмид между бактериальными клетками:

а) путем трансформации;

б) с помощью трансдуцирующих фагов;

в) путем мобилизации на перенос с помощью конъюгативных плазмид;

г) с помощью механизма самопереноса, контролируемого системой генов, объ¬единенных в tга-оперон.

В условиях широкого применения антибиотиков и других химиопрепаратов происходит естественный отбор тех штам¬мов патогенных бактерий, которые являются носителями R-плазмид. Среди них формируются новые эпидемические клоны патогенных бактерий. В настоящее вре¬мя они играют ведущую роль в эпидемиологии инфекционных болезней, и от их рас¬пространения во многом зависит эффективность антибиотико- и химиотерапии, а в итоге — здоровье и жизнь людей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]