
- •История микробиологии
- •1. Луи Пастер и его роль в развитии микробиологии. Разработка Пастером научных основ специфической профилактики инфекционных болезней.
- •Морфология микробов
- •1. Определение понятия о микробах. Понятие о виде микробов. Основные принципы классификации микроорганизмов. Критерии и признаки, используемые при классификации. Нумерическая таксономия.
- •2. Специальные методы микроскопии: люминесцентная, фазовоконтрастная, темнопольная. Понятие об электронной микроскопии. Принципы устройства и работы электронного микроскопа.
- •5. Строение бактериальной клетки. Цитоплазматическая мембрана, ее структура и основные функции. Роль мембраны в процессах мобилизации энергии, механизм энергизации мембраны.
- •6. Рибосомный аппарат бактериальной клетки, его функции. Структура рибосмы. Содержание рибосом в клетке. Сущность процессов транскрипции и трансляции.
- •7. Споры бактерий. Образование и структура споры, ее прорастание. Генетический контроль спорообразования.
- •Физиология бактерий
- •6. Ферментация углеводов как дифференциально-диагностический признак бактерий.
- •Генетика микроорганизмов
- •2. Бактериальная хромосома, ее упаковка в клетке. Формы обмена генетическим материалом у бактерий: конъюгация, трансформация, трансдукция, трансфекция и сексдукция.
- •10. Пути и способы проникновения патогенных микробов в организм человека. Динамика развития инфекционного процесса, периоды. Бактерионосительство и его значение.Пути заражения человека
- •Учение об инфекции
- •1. Антисептика. Асептика.Стерилизация, методы. Дезинфекция, способы
- •3. Нормальная микрофлора человека и ее значение для организма. Микрофлора толстого кишечника. Ее формирование и состав. Дисмикробиоценоз, причины возникновения и способы предупреждения и лечения.
- •4.Патогенность и ее проявления. Факторы патогенности бактерий. Вирулентность .Единици ее измерения.
- •5. Пути и способы проникновения патогенных микробов в организм человека. Динамика развития инфекционного процесса, периоды. Бактерионосительство и его значение.Пути заражения человека
- •7. Экзотоксины и эндотоксины, их свойства, химическая природа, действие на организм.
- •Иммунология
- •1. Виды иммунитета. Приобретенный иммунитет, пассивный и активный иммунитет.
- •3. Комплемент, состав, основные свойства. Пути активации. Участие комплемента в реакциях иммунитета. Рск, методика ее постановки и практическое использование.
- •6. Антигенное строение микробной клетки. Н-, о- и к-антигены, токсины и ферменты бактерий как антигены. Перекрестнореагирующие антигены.
- •8. Структура молекулы антитела. Константные и вариабельные участки легких и тяжелых полипептидных цепей, определяемые ими свойства антител. Классы и типы иммуноглобулинов.
- •11. Центральные и периферические органы иммунитета. Основные формы иммунного ответа. Роль антител в формировании иммунитета. Полные и неполные антитела методы их обнаружения.
- •12.Роль макрофагов в иммунном ответе.
- •13. Роль фагоцитоза в защитных реакциях организма. Механизм и фазы фагоцитарного процесса. Завершенный и незавершенный фагоцитоз. Мононуклеарная фагоцитарная система. Опсонины.
- •16. Инфекционная аллергия. Аллергическая проба в диагностике инфекционных болезней. Отличие реакций гиперчувствительности замедленного типа от реакций гиперчувствительности немедленного типа.
- •18. Иммунофлуоресцентный метод (прямой и непрямой) диагностики инфекционных болезней. Сущность метода, его преимущества и недостатки.
- •20. . Преципитирующие свойства иммунных сывороток. Использование преципитации в агаре и применение ее для изучения- антигенов и определения токсигенности дифтерийной палочки.
- •21. Литические свойства иммунных сывороток. Роль комплемента, механизм взаимодействия комплемента с комплексом антиген-антитело.
- •22. Вакцины и их виды, способы приготовления и применения. Токсины и анатоксины. Отечественные вакцинные препараты.
- •Вирусология общая
- •2. Молекулярная структура вирусов. Вирион. Особенности упаковки нуклеокапсида. Особенности структуры генома вирусов. Основные этапы взаимодействия вируса с клеткой.
- •6. Методы микробиологической диагностики вирусных заболеваний. Методы выделе¬ния и идентификации вирусов. Серологические реакции, используемые для диагностики вирусных болезней.
- •Вирусология частная
- •10.Вирусные гепатиты человека, особенности их эпидемиологии. Основные свойства возбудителей. Принципы лабораторной диагностики.
- •11. Герпесвирусы человека, состав семейства, основные свойства, вызываемые заболевания.
- •Гноеродные кокки
- •3. Стрептококки. Характеристика морфологических, культуральных свойств, анти¬генное строение. Серологическая классификация. Факторы патогенности стрептококков.
- •Менингококки. Характеристика морфологических, культуральных и биохимических свойств. Серогруппы. Патогенез менингококковых инфекций. Специфическая про¬филактика.
- •5. Гонококки, характеристика морфологических, культуральных и биохимических свойств. Методы микробиологической диагностики заболеваний, вызываемых го¬нококками.
- •7. Клебсиеллы и вызываемые ими заболевания. Лабораторная диагностика, профилактика.
- •Кишечные инфекции
- •3. Кишечная палочка, ее характеристика. Антигенное строение. Заболевания, вызываемые кишечной палочкой. Санитарное значение кишечной палочки.
- •4.Пищевые отравления
- •5. Сальмонеллы(брюшной тиф)
- •6 Возбудители дизентерии. Характеристика свойств. Факторы патогенности. Антигенное строение шигелл. Классификации дизентерийных бактерий.
- •7. Холерный вибрион. Характеристика основных свойств.
- •Патогенные анаэробы
- •3. Возбудители газовой анаэробной инфекции. Характеристика их свойств. Патогенез заболевания. Микробиологический диагноз. Специфическая профилактика и терапия.
- •4 Возбудитель столбняка, характеристика его свойств.
- •5. Микробиологический диагноз столбняка. Выделение возбудителя, биологическая проба. Специфическая профилактика столбняка, ее значение в условиях Краснодарского края.
- •6.Возбудитель ботулизма, характеристика основных свойств.
- •"Капельные" инфекции
- •1Возбудитель дифтерии. Характеристика морфологических, культуральных и биохимических свойств.
- •2Микобактерии.Туберкулез.
- •4. Возбудители коклюша и паракоклюша. Характеристика их свойств. Патогенез коклюша. Микробиологическая диагностика. Специфическая профилактика.
- •Риккетсии
- •1. Риккетсиозы, их классификация. Эндемические риккетсиозы, резервуары возбу¬дителей в природе и их переносчики. Методы диагностики риккетсиозов.
- •Спирохеты, грибы, простейшие
- •1. Морфология и ультраструктура спирохет, классификация. Патогенные виды. Методы выявления.
- •4. Особенности патогенеза и иммунитета при сифилисе. Методы микробиологической диагностики сифилиса. Р-я Вассермана.
- •5. Возбудители возвратных тифов. Формы возвратного тифа и переносчики возбуди¬телей. Патогенез возвратного тифа.
- •8. Виды малярийных плазмодиев. Микробиологический диагноз малярии. Методы борьбы с малярией. Успехи в борьбе с малярией в России.
- •11. Патогенная (дизентерийная) амеба, вегетативные формы и циста. Патогенез амёбиаза. Микробиологический диагноз амёбиаза.
- •Микробиология пр
- •1.Бифидо и лактобактерии
- •2 Пр как экологическая ниша
- •3 Биотопы пр
7. Споры бактерий. Образование и структура споры, ее прорастание. Генетический контроль спорообразования.
Некоторые роды бактерий (Васilus, Сlоstridium, Sporosarcina) при неблагоприят¬ных для их существования условиях образуют защитные формы — эндоспоры.спорообразование вызывает недостаток углерода в среде. Она начинается с репликации генома с помощью выпячивающей ЦМ,ограничивает зону проспоры. Материнская клетка обростает это проспору,образуется кортикс. В нем содержаться кальциевые натриевые соли дипикалиновой кислоты,имеющую высокую точку плавления
-Протопласт споры (ядро) содержит ЦМ, цитоплазму, хромосому, все компо¬ненты белоксинтезирующей системы и анаэробной энергообразующей системы.
-Стенка споры непосредственно окружает внутреннюю мембрану ее и представ¬лена пептидогликаном, из которого формируется клеточная стенка прорастающей клетки.
В благоприятных условиях спора прорастает, образуя ростовую трубку, она покрывается клеточной стенкой превращаясь в вегетативную форму.
-Кортекс — самый толстый слой оболочки споры. Он состоит из пептидогликана, содержащего мало поперечных сшивок и поэтому очень чувствительного к лизоциму. Разрушение кортекса лизоцимом играет пусковую роль в процессе прорастания споры.
-Оболочка споры построена из кератиноподобного белка. Плохая проницаемость ее определяет высокую устойчивость спор к действию различных химических веществ.
-Экзоспорий — липопротеиновая оболочка, содержащая немного углеводов. После завершения спорообразования вегетативная часть клетки отмирает, спора высвобождается и длительное время сохраняется в окружающей среде, до тех пор, пока не возникнут условия, благоприятные для ее прорастания.
Генетигеский контроль спорообразования
Процесс спорообразования контролируется более чем 40 оперонами, которые представляют собой как бы дополнительный геном у спорообразующих бактерий. В составе этого генома насчитывается более 60 генов. Инициация споруляции связа¬на с геном sроО, мутации в котором делают невозможным образование споры с са¬мых начальных стадий. Транскрипция гена sроО запускает последовательную тран¬скрипцию всех оперонов спорового генома. Спорообразующие бактерии обладают механизмами, с помощью которых они распозна¬ют определенные изменения в окружающей среде, например, уменьшение содержа¬ния источников энергии, некоторых аминокислот и оснований. В ответ на это в клетке происходят метаболические изменения, которые и запускают споруляцию.
Физиология бактерий
1. Размножение микробов. Механизмы деления бактериальной клетки. Методы культивирования микробов: стационарный, глубинный с аэрацией, проточный. Периодические, непрерывные и синхронные культуры. Фазы роста периодической культуры.
Бактерии размножаются преимущественно простым поперечным делением (вегетативное размножение), которое происходит в различных плоскостях, с образованием многообразных сочетаний клеток (кисть винограда — стафилококки, цепочки — стрептококки, соединения по парам — диплококки, тюки, пакеты — сарцины и др.). Процесс деления состоит из ряда последовательных этапов. Первый этап начинается формированием в средней части клетки поперечной перегородки (рис. 6), состоящей вначале из цитоплазматической мембраны, которая делит цитоплазму материнской клетки на две дочерние. Параллельно с этим синтезируется клеточная стенка, образующая полноценную перегородку между двумя дочерними. В процессе деления бактерий важным условием является репликация (удвоение) ДНК, которая осуществляется ферментами ДНК-полимеразами. При удвоении ДНК происходит разрыв водородных связей и образование двух спиралей ДНК, каждая из которых находится в дочерних клетках. Далее дочерние односпиральные ДНК восстанавливают водородные связи и вновь образуют двуспиральные ДНК.
Для выращивания бактерий используют следующие способы их культивирования: стационарный, глубинный с аэрацией и с использованием проточных питательных сред.
1. Стационарный способ: питательные среды сохраняются постоянными, с ними никаких дополнительных манипуляций не производят. Однако при таком способе культивирования в жидких питательных средах, где преобладают анаэробные энер¬гетические процессы, выход биомассы незначителен. Поэтому в связи с развитием микробиологической промышленности были разработаны принципиально новые способы культивирования, позволяющие получать гораздо больший выход биомас¬сы или биологически активных соединений. К их числу относятся метод глубинно¬го культивирования с аэрацией и метод использования проточных сред.
2. Метод глубинного культивирования с аэрацией. Для выращивания с помо¬щью этого способа применяют специальные устройства — реакторы. Они представ¬ляют собой герметические котлы (приспособленные автоклавы), в которые залива¬ется жидкая питательная среда. Реакторы снабжены автоматическими приспособле¬ниями, позволяющими поддерживать постоянную температуру, оптимальные рН и гН2, дозированное поступление необходимых дополнительных питательных ве¬ществ. Однако главная особенность таких реакторов в том, что они постоянно про¬дуваются стерильным воздухом и в них установлены мешалки, с помощью которых среда постоянно перемешивается. Поэтому во всей питательной среде создается та¬кая концентрация свободного кислорода, при которой энергетические процессы происходят в аэробных условиях, т. е. достигается максимальное использование энергии, заключенной в глюкозе, а следовательно, и максимальный выход биомас¬сы.
3. Использование проточных питательных сред позволяет создать условия, при которых клетки имеют возможность длительное время находиться в определенной фазе роста (экспоненциальной) при постоянной концентрации питательных ве¬ществ и в одних и тех же условиях, обеспечивающих непрерывный рост культуры. Методы получения непрерывных культур основаны на том, что в аппарат, где растут клетки, непрерывно добавляют свежую питательную среду и одновременно из него удаляют соответствующее количество бактерий.
Таким образом, в соответствии со способами культивирования различают:
1) периодические (при ста¬ционарном и глубинном методах культивирования) и
2) непрерывные (при проточном способе) культуры микроорганизмов.
3) синхронные культуры, в которых все клетки одновременно (синхронно) делятся. Однако такая синхронность сохраняется, как правило, в течение 2—3 циклов деления, а затем она нарушается. Синхронные культуры используют в ос¬новном для изучения тех или иных стадий клеточного цикла бактерий и роли отдель¬ных генов (и их продуктов) в их осуществлении.
Фазы роста:
Первая фаза — латентная (лаг-фаза) — соответствует приспособлению бактерий к новым условиям существования. В этот период бактерии адаптируются к питательной среде, роста их не наблюдается.
Вторая фаза — логарифмического роста (экспоненциальная), когда бактерии энергично растут, увеличиваются, при достижении определенного размера начинают делиться на две дочерние клетки. Деление в этот период происходит с постоянной скоростью. Среднее время генерации (или удвоения) для каждого вида бактерий различно. В это время бактерии извлекают из среды питательные вещества, в результате чего в ней начинают накапливаться продукты обмена.
Третья фаза — стационарного роста, во время которой число организмов в культуре все время остается постоянным. В этот период в питательной среде количество питательных веществ значительно уменьшается, а накопление продуктов обмена увеличивается. Условия жизни для микроорганизмов становятся все менее благоприятными. Длительность стационарной фазы у разных бактерий различная.
Четвертая фаза — отмирания, когда клеток бактерий становится все меньше и они погибают. В конце этой фазы число отмирающих бактерий начинает преобладать над числом жизнеспособных клеток. Полная гибель микробов в культуре может наступить через несколько недель или месяцев, что зависит от вида микроба, реакции среды и других факторов.
2. Искусственные питательные среды, применяемые для выращивания микробов. Требования, предъявляемые к питательным средам. Дифференциально-диагностические среды, принципы их конструирования. Состав сред Эндо и Плоскирева.
Они могут выть жидкими, плотными или полужидкими. Жидкие cреды готовят на основе водных растворов каких-либо веществ, чаще всего мясной воды, различных гидролизатов, иногда жидких естественных продуктов (молока, крови и др.). Для получения плотных сред к ним добавляют или агар, или желатин, или силикагель в соответствующих концентрациях. По происхождению среды де¬лят на синтетические,полусинтетические,натуральные.
Питательные среды должны обязательно отвечать трем основным требованиям:
они должны содержать в достаточном количестве все необходимые питатель¬ные вещества (источники энергии, углерода, азота), соли и ростовые факторы;
должны иметь оптимальную для роста данного вида бактерий рН,обладать буферными свойствами;
должны иметь достаточную влажность
Должны быть достаточно вязкими,
Стерильными,
Изотоническими
Быть прозрачными(необязательно)
-Дифференциально-диагностические — среды, позволяющие отличать одни виды бактерий от других по их ферментативной активности или культуральным проявлениям. К ним относятся среды Эндо, Левина, Плоскирева, Гисса,среда «пестрого ряда» и многие др.
-Среда Эндо. Состоит из МПА с добавлением 1% лактозы и обесцвеченного сульфитом натрия основного фуксина (индикатор). Среда Эндо имеет слаборозовый цвет. Используется в диагностике кишечных инфекций для дифференциации бактерий, разлагающих лактозу с образованием кислых продуктов, от бактерий, не обладающих этой способностью.
-Среда Плоскирева.
В состав среды входят: 53,6% сухого питательного агара с желчными солями, 14,4% лимонно¬кислого натрия, 11% гипосульфита, 12% лактозы, 3,7% фосфорнокислого натрия, 0,03—0,06% нейтрального красного, 0,002 бриллиантового зеленого, 1,2% соды кальцинированной, 0,04% йода, 3,7% NaCl. Используется для выделения дезинтерийных бактерий и возбудителей сальмонеллезов
3. Питание микробов. Типы питания. Источники углерода, азота и энергии. Механизм питания бактерий, диффузия, облегченная диффузия, активный транспорт. Пермеазные системы, их состав, этапы активного транспорта.
Большинство бактерий живет в среде, мало подходящей для того, чтобы поддер¬живать строгое соотношение воды, солей и органических веществ, без которого не¬возможна жизнь. Это обусловливает необходимость постоянного и тщательного ре-гулирования обмена различными веществами, который происходит между клеткой и внешней средой и контролируется клеточной мембраной. Она проницаема для многих веществ, поток их идет в обоих направлениях (из клетки и в клетку), но структура мембраны такова, что она обладает избирательной и неравномерной про¬ницаемостью, определяющей механизмы питания бактерий.
Типы питания.
По способу углеродного питания бактерии делят на аутотрофы и гетеротрофы.
-Аутотрофы— организмы, которые полно¬стью удовлетворяют свои потребности в углероде за счет С02.
-Гетеротрофы— организмы, которые не могут удовлетворить свои потребности в углероде только за счет С02, а требуют для питания готовых органических соединений. В свою очередь, гетеротрофов подразделяют на сапрофитов; и паразитов . Для превращения С02 в органические соединения требуется энергия. Существует два источника этой энергии - фотосинтез и хемосинтез.
-Фотосинтез — это синтез за счет энергии солнечного света.
-Хемотаксис — грамотрицательные бактерии используют для своего роста энергию хемосинтеза, т. е. энергию, получаемую за счет окисления неорганических соединений.
Питательные вещества из внешней среды поступают в бактериальную клетку с помощью трех основных механизмов: пассивной диффузии, облегченной диффу¬зии и активного транспорта.
1. Пассивная диффузия осуществляется по градиенту концентрации, без затраты энергии и очень медленно. Присущ для воды и растворенных в ней неорган.соед.
2. Облегченная диффузия –по градиенту концентрации ,без затраты энергии,для низкомолекулярных органических соединении. В транспорте участвуют низкомолекулярные белки-пермиазы
3. Активный транспорт- против градиента концентрации с высокой скоростью,предназначены для крупных орган молекул. Осуществляется транспорт 2-мя типами белков-пермиазы и связующие белки(строго специфицые к субстрату). Энергия затрачивается на высвобождение субстрата на внутренней поверхности мембраны
4. Дыхание микробов. Аэробы и анаэробы. Получение энергии в аэробных и анаэробных условиях. Облигатные и факультативные анаэробы. Причины высокой чувствительности анаэробов к молекулярному кислороду. Методы культивирования анаэробов.
По типу дыхания подразделяются на следующие четыре группы:
Анаэробы(используют молукулярный кислород в качестве конечного акцептора электронов. Пр:синегнойная палоча.)
Факультативные анаэробы(в аэробных условия в качестве конечного акцептора электронов используют О2 в анаэробных орган вещ-ва Пр: стафилококки,стрептококки).
Микроаэрофилы(нуждаются в сниженном кол-ве порциального давления О2(5-10%). Пр:менингококк,гонококк. При этом есть микроаэрофили,которые нуждаются в повышенно концентрации СО2-капнофилы)
Анаэробы-для них молекулярный О2-токсичен, их 2 типа:
Облигатные(при соприкосновении с О2 гибнут немедленно)
Аэроталерогены(выдерживают присут-е О2 от 15 до 30 минут)
Разницы достигается наличием ф-та-оксидисмутазы,который превращает высокотоксичный синглетный кислород О2- в Н2О2
Причины высокой чувствительности анаэробов:
-отсут-е каталазы(расщепляет Н2О2=Н2О+О2)
-эффект Пастера(угнетение анаэробных метаболических реакции в присут-е О2)
-отсут-е систем, поддерживающих постоянтсво редокс-потенциала.
Культивирование анаэробов. В связи с высокой чув¬ствительностью строгих анаэробов к молекулярному кислороду для их культиви¬рования с помощью различных способов создаются бескислородные условия. С этой целью используются механические, физические, химические и биологиче¬ские способы удаления кислорода: посевы в глубокие столбики агара; кипячение (регенерация) жидкой питательной среды (Китта—Тароцци), содержащей глюко¬зу и кусочки печени (для связывания растворенного кислорода), и заливка ее сте¬рильным вазелиновым маслом; добавление в атмосферу роста химических ве¬ществ, поглощающих кислород (например, щелочного пирогаллола); совместное культивирование строгих аэробов и анаэробов на кровяном агаре с глюкозой в за- парафинированной чашке Петри (вначале растут строгие аэробы, а после сниже¬ния содержания кислорода — анаэробы) — способ Фортнера — и т. п. Наилучшим методом является применение специальных анаэростатов, из которых воздух от¬качивается и (или) замещается каким-либо инертным газом или смесью азота и углекислого газа.
5. Процессы брожения и гниения. Их значение для круговорота веществ в природе, а также для хозяйственной деятельности человека. Круговорот азота в природе и бактерии, участвующие в нем. Виды брожения.
Анаэробиоз — жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.
Гниение- разложение сложных азотсодержащих органических соединений (преимущественно белков) под действием гнилостных микроорганизмов; т.к. при гниение выделяется преимущественно газообразный аммиак, гниение называется также аммонификацией, а микроорганизмы, участвующие в нём, — аммонификаторами. Гниение — сложный многоступенчатый биохимический процесс, направление которого и результат не постоянны и зависят от химической природы субстрата, от доступа кислорода и состава микрофлоры. На разных этапах гниение доминируют специфические группы микробов.
Среди гнилостных микроорганизмов ведущая роль принадлежит бактериям — анаэробам и факультативным анаэробам, обладающим мощными протеолитическими ферментами, а также аэробным спороносным бактериям рода Bacillus и неспороносным из рода Pseudomonas. В гниение участвуют и плесневые грибы; роль актиномицетов незначительна. Большинство гнилостных бактерий сапрофиты, некоторые из них способны гидролизовать живую ткань, вызывая заболевания.
Гниение играет важную роль в круговороте веществ в природе: в результате жизнедеятельности и гибели животных и растений в почву и водоёмы попадает много белковых продуктов, которые лишь благодаря деятельности гнилостной микрофлоры не накапливаются, а минерализуются и вновь могут быть использованы растениями. С помощью протеолитических ферментов (протеаз и пептидаз) гнилостные бактерии расщепляют белки на полипептиды и далее на аминокислоты, подвергаемые многими микроорганизмами дезаминированию или декарбоксилированию. В результате дезаминирования выделяется газообразный аммиак, образуются насыщенные и ненасыщенные кислоты жирного и ароматического ряда, кето- и оксикислоты; при декарбоксилировании — амины, многие из которых очень ядовиты. Радикалы аминокислот, появляющиеся в результате дезаминирования и декарбоксилирования, подвергаются дальнейшему распаду. Из триптофана образуются скатол и индол, из серусодержащих аминокислот метионина и цистеина — сероводород; жирные кислоты могут сбраживаться с выделением метана. При гниение без доступа воздуха преобладают восстановительные процессы и накапливаются многие указанные продукты; при свободном доступе воздуха Г. проходит до конца, и весь углерод органических соединений выделяется в виде CO2.