
- •1.Акти́вний о́пір — частина повного опору електричного кола змінного струму, яка поглинає електричну енергію і визначається вживаною потужністю p таструмом I в колі за формулою
- •3. Атомна енергетика.
- •4. Атомне ядро.
- •5.Будова атома. Досліди Резерфорда.
- •8. Взаємозв'язок маси та енергії матерії.
- •11. Випромінювання електромагнітних хвиль
- •14. Динамічні методи дослідження сировини і матеріалів
- •15. Дисперсія світла. Дослідження Ньютона.
- •16. Дифракція світла. Дифракційна ґратка.
- •17.Електричні коливання. Електричний коливальний контур.
- •18. Електричні прилади і їх використання.
- •20. Елементи квантової фізики. Принцип невизначеності
- •21. Енергія світлової хвилі. Вектор Пойтінга.
- •22. Ефект Компотна.
- •23. Загальні відомості про елементарні частинки.
- •24. Закон Біо-Савара-Лапласа
- •25. Закон радіоактивного розпаду.
- •26. Закон циркуляції магнітного поля.
- •27. Закони відбиття та заломлення світлових хвиль.
- •28. Закони Столєтова для фотоефекту.
- •29. Згасаючі електричні коливання.
- •30. Інтерференція світла від двох когерентних джерел.
- •31. Інтерференція світла і її умови
- •32. Інтерференція світла на тонких плівках. Просвітлення нитики
- •33. Класифікація матеріалів за магнітними властивостями.
- •34. Коефіцієнти відбиття та проходження електромагнітних хвиль.
- •35. Коливальний контур.
- •38. Магнітне поле.
- •39. Магнітні поля колового та нескінченного струму.
- •40.Напруженість та магнітна індукція. Сила Лоренца.
- •43.Поведінка провідників у змінному полі.
- •45.Потенціальна яма. Тунельний ефект.
- •46.Потенціальний бар’єр.
- •47.Потік магнітного поля. Закон електромагнітної індукції Фарадея.
- •48.Принцип дії електричного генератора змінного струму.
- •49.Принцип радіозв’язку. Модульований радіосигнал.
- •50.Принцип Ферма розповсюдження світлових хвиль.
- •55.Радіоактивність.
- •56. Рівняння електромагнітної поля.
- •60.Серії випромінювання, квантування енергії.
- •61.Сила Ампера.
- •68.Умови виникнення періодичного руху.
- •69.Феромагнетики, парамагнетики та діамагнетики.
- •70.Фігури Ліссажу.
- •71.Формула тонкої лінзи той, що збирає і той, що розсіюс.
- •77.Ядерний розпад.
30. Інтерференція світла від двох когерентних джерел.
Світло - це електромагнітна хвиля, тому, якщо в просторі одночасно поширюються дві чи більше хвиль, то в кожній точці хвилі будуть накладатись одна на одну, утворюючи інтерференційну картину. Вона складається із повторюваних мінімумів (min) і максимумів (max) освітленості.
Нехай від джерел S1 i S2 поширюються дві хвилі, які збігаються в точці А. d1 і d2 - довжина ходу першої і другої хвиль; Dd = d1 – d 2 - різниця ходу.
Якщо в різницю ходу Dd вкладається парна кількість півхвиль, то обидві хвилі надійдуть в точку А в однакових фазах і підсилять одна одну - в точці А буде максимальним. Якщо в різницю ходу Dd вкладається непарне число півхвиль, то хвилі прийдуть в точку А в протифазах і погасять одна одну - в точці А буде мінімум інтенсивності світла.
Математично умови максимум i мінімум можна виразити так:
-
умова максимуму;
-
умова мінімуму.
де k = 1, 2, 3,…, n (ціле число); l - довжина хвилі.
Чим сильніше відрізняються частоти коливань, тим швидше змінюється розміщення максимумів і мінімумів, і стійка інтерференція не спостерігається. Таким чином, для спостереження інтерференційної картини необхідно, щоб хвилі мали однакову частоту (період або довжину хвилі) і незмінну різницю фаз в кожній точці простору, де вони накладаються одна на одну. Такі хвилі називають когерентними. Отже, стійка інтерференційна картина спостерігається лише під час накладання когерентних хвиль. Для одержання когерентних джерел світла вдаються до штучного прийому: розділяють пучок світла від одного джерела на два чи кілька пучків, які йдуть у різних напрямах, а потім знову зводять і накладають один на одного. Якщо ці частини однієї хвилі пройдуть різну відстань, то між ними виникне різниця фаз, обумовлена різницею ходу хвиль, і при накладанні хвиль повинні виникнути інтерференційні явища. Це розділення пучка на два можна здійснити різними способами. Наприклад, за допомогою біпризми. Біпризма - це дві вузькі призми, складені малими основами.
31. Інтерференція світла і її умови
Інтерференція - додавання двох світлових хвиль у просторі, внаслідок чого спостерігається стійка в часі картина підсилення або послаблення результуючих світлових коливань у різних точках простору. Зони підсилення називають зонами максимумів, зони послаблення - мінімумів. Щоб положення цих зон було незмінним і картина інтерференції залишалась стійкою в часі, хвилі мають зберігати свої властивості, не змінюючи їх з часом. Якщо ця умова виконана (різниця фаз у хвилях з часом їх частота є однаковою), то хвилі називають когерентними. Математично умови максимум i мінімум можна виразити так:
- умова максимуму;
- умова мінімуму. Застосування інтерференції дуже важливі й широкі. Інтерференцію світла застосовують для визначення довжини хвилі світла, показників заломлення прозорих речовин, вимірювання товщини пластинок, перевірки якості шліфування поверхні, вимірювання малих кутів тощо.
32. Інтерференція світла на тонких плівках. Просвітлення нитики
Ц
ікавий
випадок інтерференції
спостерігав
Юнг розглядаючи у відбитому
світлі
тонкі
плівки
(рис. 6.37).
Одна частина світлового потоку відбивається від верхньої поверхні плівки, а друга - після заломлення від нижньої. Після цього обидва промені збігаються в оці спостерігача. При цьому виникає різниця ходу, що дорівнює подвоєній товщині плівки Dd = 2h. У результаті цього і виникає інтерференційна картина. Якщо освітлюється плівка одним кольором, спостерігається чергування чорних і білих смуг, а якщо білим , то зазвичай кольори веселки.
Інтерференцією світла в тонких плівках пояснюється забарвлення мильних бульбашок і тонких п'ятен з оливи на воді, хоча розчин мила й олива не мають такої гами кольорів. У 1935 р. український учений О.Смакула зробив відкриття – спосіб поліпшення оптичних приладів – «просвітлення оптики». Суть відкриття полягає в тому, що поліровану поверхню скляної лінзи покривають тонким шаром певного матеріалу. Завдяки явищу інтерференції у цій тонкій плівці відбите від полірованої поверхні світло гаситься і більше світла проходить вперед. Таких поверхонь на шляху світла, що проходить через складний прилад, досить багато тому втрата навіть кількох відсотків світла на відбиття на кожній з них привело б до того, що на виході ми вже б нічого не побачили.