Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Йожики.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.23 Mб
Скачать

41. Стабилизаторы. Назначение. Классификация. Принципы построения и функционирования. Проблема миниатюризации.

  1. Параметричні перетворювачі постійної і змінної напруги: принципи дії, параметри, розрахункові співвідношення, область застосування

В параметрических стабилизаторах напряжения режим стабилизации осуществляется за счет нелинейности вольтамперной характеристики (ВАХ) регулирующего элемента. От ВАХ зависит качество стабилизации. В параметрических стабилизаторах напряжения находят применение элементы, ВАХ которых представлена на рисунке.

Степень нелинейности ВАХ на рабочем участке ВС оценивается отношением динамического и статического сопротивлений.

Статическое сопротивление RС - это сопротивление, которое оказывает нелинейный элемент постоянному по величине току в выбранной рабочей точке А характеристики: RС=U0/I0=tga.

Динамическое сопротивление элемента RД равно отношению изменения падения напряжения на элементе U к изменению величины тока, протекающего через элемент I. Динамическое сопротивление является тем сопротивлением, которое оказывает элемент изменениям протекающего через него тока: RД=U/I=tg.

Статическое и динамическое сопротивления не равны между собой и изменяются в зависимости от величины напряжения и тока : a < ; RС>RД.

В качестве нелинейных элементов в параметрических стабилизаторах напряжения используются газоразрядные и кремниевые стабилитроны. Схемы параметрических стабилизаторов с использованием стабилитронов применяются для стабилизации напряжения при мощности в нагрузке до нескольких ватт. Достоинство таких схем - простота исполнения и малое количество элементов, недостаток - отсутствие плавной регулировки и точной установки номинального значения выходного напряжения, кроме этого, у таких схем мал к.п.д..

Схема стабилизатора состоит из гасящего сопротивления RГ, включенного последовательно с нагрузкой, и стабилитрона VD, включенного параллельно нагрузке.

Рассмотрим принцип действия данного стабилизатора.

На рисунке изображены ВАХ стабилитрона и нагрузки. Так как сопротивление нагрузки и стабилитрон включены параллельно, то для построения суммарной характеристики необходимо сложить характеристики сопротивления RН (прямая ОА ) и стабилитрона VD по оси токов. Полученная кривая представляет собой зависимость U2=f(IН+IСТ). Рабочий участок этой кривой получается смещением характеристики стабилитрона на величину тока нагрузки IН. Отложив на оси ординат величину входного напряжения U0, строим из этой точки характеристику сопротивления RГ. Точка пересечения этой характеристики с суммарной характеристикой сопротивления нагрузки и стабилитрона определяет установившийся режим для данной величины входного напряжения. При изменении входного напряжения характеристика сопротивления RГперемещается и соответственно перемещается рабочая точка на суммарной характеристике U2=f(IН+IСТ).

Как видно из рисунка, при изменении входного напряжения от U1MIN до U1MAX напряжение на сопротивлении нагрузки изменятся от U2(1) до U2(2), причем изменение выходного напряжения U2 значительно меньше изменения напряжения на входе U1.

Для определения основных показателей качества параметрического стабилизатора постоянного напряжения представим его функциональной схемой для изменений напряжения на входе.

Считая, что стабилизатор нагружен на активное сопротивление RН, изменение U1 является медленным и дифференциальное сопротивление стабилитрона неизменно в пределах рабочеого участка характеристики стабилитрона. Тогда, передаточная функция, связывающая возмущение на входе U1 с реакцией на выходеU2, представляется коэффициентом деления

(1)

Преобразуя (1), имеем

(2)

Из (1) определяем

(3)

Отношение U1/U2 является дифференциальным коэффициентом стабилизации KСТ.Д., который связан с коэффициентом стабилизации KСТ.U выражением

(4)

где K0=U2/U1- коэффициент передачи постоянной составляющей напряжения стабилизатора.

В параметрических стабилизаторах переменного напряжения используют различные схемные включения линейных и нелинейных элементов.

Простейший стабилизатор напряжения состоит из последователь­ного соединения линейного Zл и нелинейного Zнл сопротивлений, вольт-амперная характеристика которого имеет участок Zнл const. Такую характеристику имеют варисторы U(I), дроссели насыщения Z(I), нелинейные конденсаторы Z(I) и др. Выходное напряжение Uст снимается в схеме с не­линейного элемента. Эффект стабилизации определяется тем, что Un >> Uст.

Параметрические стабилизаторы на активных сопротивлениях имеют слишком малый к.п.д. вследствие активных потерь в линейном и не­линейном элементах и поэтому применяются лишь для небольших мощ­ностей - до нескольких ватт.

В цепях переменного тока более высоких мощностей применяют­ся параметрические стабилизаторы на реактивных сопротивлениях: в качестве линейного элемента Zл используют обычно нена­сыщенный дроссель L1, а нелинейного Zнл - насыщенный L2. Нагрузка подключается параллельно нелинейному элементу.

Последовательное соединение линейного и нелинейного дроссе­лей образует простейший ферромагнитный стабилизатор. Ему присущи следующие недостатки: малое значение коэффициента стабилизации KU (единицы), неси­нусоидальная форма кривой выходного напряжения, малый диапазон стабилизации, низкий КПД, вследствие чего подобная схема при­менения не нашла.

Можно существенно повысить значение коэффициента стабилиза­ции KU и расширить диапазон входного напряжения упомянутого стаби­лизатора, если уменьшить величину Uст путём введения в схему дополнительного компенсирующего напряжения Uк . Существуют два основных метода компенсации: напряжением, пропорциональным напряжению на линейном дросселе или напряжением, пропорциональным напряжению сети. Компенсирующее напряжение необходимо потому, что одним только выбором материала сердечника насыщенного дросселя довести Uст до нуля не удается из-за конечной крутизны кривой намагничивания на участке насыщения. Поэтому создают последовательный или парал­лельный феррорезонансный контур. КПД схемы можно существенно повысить ( до 0,7 - 0,8), если параллельно нелинейному дросселю подключить вспомогательную ли­нейную емкость С. Оба указанных способа применяются в современных феррорезонансных стабилизаторах. Наиболее эффективным является стабилизатор с феррорезонансом токов.

Построим результирующую ВАХ нелинейного контура, который настроен в резонанс при Uсети ном. Поэтому ток, потребляемый контуром в точке А :

При малых напряжениях индуктивность дросселя велика, ток мал и результирующий ток имеет ёмкостный характер. В т. А. (резонанс) и при дальнейшем повышении напряжения I имеет индуктивный характер и резко увеличивается, что соответствует уменьшению индуктивности. При этом напряжение на контуре изменяется меньше чем на отдельном дросселе насыщения: стабильность выходного напряжения U2 значительно больше.

Феррорезонансные стабилизаторы просты, надёжны, КПД достигает 85%, стойки к электрическим и механическим перегрузкам, работают в широком диапазоне температур. Выходные мощности - от 100вт до 10квт. Коэффициент стабилизации по напряжению КU=15…30.

Недостатки: чувствительны к изменению частоты. Так, при выходное напряжение изменяется на ! Имеют существенную массу и объём, несинусоидальность напряжения .