
- •2. Источники электрической энергии переменного и постоянного тока. Источники первичного и вторичного электропитания. Общие сведения и понятия.
- •3. Системы электроснабжения и электропитания средств почтовой связи. Принципы построения и функционирования (энергосистема, подстанция, электроустановка, качество электрической энергии).
- •4. Системы электропитания постоянного тока. Классификация. Системы электропитания с использованием и без использования аккумуляторов. Принципы построения и функционирования.
- •Буферная система электропитания
- •С отделенной от нагрузки аб
- •Безаккумуляторная система электропитания
- •5. Системы электропитания переменного тока. Источники бесперебойного питания. Классификация. Принципы построения и функционирования.
- •8. Режим холостого хода трансформатора. Основные соотношения и векторная диаграмма трансформатора в режиме холостого хода. Особенности работы трансформатора источника несинусоидального напряжения.
- •9. Режим короткого замыкания и опыт короткого замыкания трансформатора. Векторная диаграмма трансформатора в этом режиме.
- •10. Рабочий режим трансформатора. Уравнение равновесия намагничивающего сил и эдс. Векторная диаграмма и схема замещения трансформатора в рабочем режиме.
- •Режим короткого замыкания
- •12. Трансформация трехфазного напряжения (тока). Трехфазный трансформатор. Схемы соединения обмоток трансформатора. Группы трехфазных трансформаторов. Условия параллельной работы трансформаторов.
- •14. Измерительные трансформаторы. Автотрансформаторы. Принцип действия. Особенности функционирования и конструктивного исполнения.
- •Автотрансформатор (рис. 1) имеет одну обмотку – обмотку высшего напряжения.
- •Критериями качества работы выпрямителя являются:
- •16. Работа однофазных и трехфазных выпрямителей на нагрузку активного характера.
- •18. Работа выпрямителей на нагрузку индуктивного характера. Временные диаграммы токов и напряжений в цепях и элементах схемы.
- •19. Работа выпрямителей на нагрузку смешанного характера.
- •20. Коэффициент использования трансформатора в схемах выпрямителя. Коэффициент мощности. Кпд выпрямителя.
- •22. Мостовая схема выпрямления (схема Герца). Преимущества и недостатки этой схемы. Временные диаграммы при нагрузках различного характера.
- •23. Простая трехфазная схема выпрямления при работе на нагрузку различного характера.
- •24. Двухфазная простая схема выпрямления. Временные диаграммы при работе на нагрузку различного характера.
- •25. Мостовая шестифазная схема выпрямления (схема Ларионова). Работа схемы на нагрузку
- •26. Схема удваивания напряжения (схема Латура). Временные диаграммы токов и напряжений в цепях и элементах схемы.
- •Критериями качества сглаживающего фильтра являются:
- •28. Индуктивный и емкостной сглаживая фильтры. Преимущества и недостатки. Особенности функционирования. Расчетные соотношения.
- •29. Индуктивно-емкостный сглаживающий фильтр. Особенности функционирования. Эквивалентная схема для простейших сглаживающих фильтров Вывод расчетных соотношений для коэффициента сглаживания.
- •30. Резистивно-емкостной сглаживающий фильтр. Область применения, расчетные соотношения (коэффициенты сглаживания, кпд). Активно- емкостный (r-c) сглаживающий фильтр
- •Буферная система электропитания
- •32. Многозвенные сглаживающие фильтры. Область применения, расчетные соотношения.
- •33. Активные сглаживая фильтры. Особенности функционирования. Преимущества и недостатки.
- •34. Статические преобразователи постоянного напряжения. Назначение. Принципы построения и функционирования. Общие сведения. Классификация, область применения.
- •35. Транзисторные и тиристорные преобразователи постоянного напряжения. Нерегулируемые двухтактные преобразователи напряжения. Основные схемы.
- •36. Инверторы. Принцип инвертирования постоянного напряжения. Основные схемы. Однотактный, двухтактные. Принципы построения и функционирования.
- •37. Типичные схемотехнические решения преобразователей постоянного напряжения с безтрансформаторной развязой. Особенности функционирования.
- •38. Однотактный схемотехнические решения преобразователей постоянного напряжения с трансформаторной развязкой. Область применения. Особенности функционирования.
- •40. Транзисторные преобразователи с самовозбуждением: схема, принцип действия, временные диаграммы, расчетные соотношения.
- •41. Стабилизаторы. Назначение. Классификация. Принципы построения и функционирования. Проблема миниатюризации.
- •Параметричні перетворювачі постійної і змінної напруги: принципи дії, параметри, розрахункові співвідношення, область застосування
- •43. Компенсаційні стабілізатори напруги і струму з беззупинним регулюванням. Принцип побудови і регулювання. Область застосування.
- •Тиристорні стабілізатори напруги: принцип дії, схеми, область застосування. Компенсаційні стабілізатори змінної напруги і струму: принцип будування, схеми, параметри, область застосування.
- •Критериями качества работы выпрямителя являются:
- •Критериями качества сглаживающего фильтра являются:
- •К выпрямительному устройству предъявляются требования по качеству выходного напряжения, которое характеризуется :
- •Основні тенденції, напрямок подальшого розвитку і вдосконалення приладів і систем електроживлення. Питання оптимізації і комплексної мініатюризації приладів і систем електроживлення
38. Однотактный схемотехнические решения преобразователей постоянного напряжения с трансформаторной развязкой. Область применения. Особенности функционирования.
В автономных источниках питания, предназначенных для работы непосредственно от сети переменного тока, необходимо использовать трансформаторы с целью гальванической развязки нагрузки от сети. Трансформаторы применяются также в источниках питания, где подобная развязка необходима по другим причинам, например в медицинском оборудовании.
Автономный сетевой источник питания по сути представляет собой источник постоянного тока(DC), который питает преобразователь постоянного напряжения в постоянное напряжение(DC/DC) с трансформаторной развязкой. Далее в этом разделе мы сфокусируем внимание именно на схемах таких DC/DC преобразователей.
На Рис. 1.7 изображён однотактный обратноходовой преобразователь.
Рис. 1.7. Идеализированная модель однотактного обратноходового преобразователя
Может показаться, что в этом источнике питания использован трансформатор, но на самом деле это дроссель с двумя обмотками. Первичная обмотка дросселя используется для накопления электромагнитной энергии, как в повышающем преобразователе. Обратите внимание, что фазировка обмоток противоположна той, что имеется в обычном трансформаторе. При замкнутом ключе происходит накопление энергии в сердечнике дросселя и во вторичной обмотке ток не течёт. Когда ключ размыкается, начинает течь ток во вторичной обмотке и энергия отдаётся в нагрузку. Напряжение на выходе определяется соотношением витков, как в трансформаторе. Обратноходовой преобразователь является единственным (из работающих непосредственно от сети переменного тока) преобразователем, в котором используется дроссель; во всех остальных применяется трансформатор. Одним из достоинств обратноходового преобразователя является то, что нет необходимости в дополнительном сглаживающем фильтре. Энергия, накопленная в дросселе, «сбрасывается» непосредственно в конденсатор и нагрузку. В этом заключается также и недостаток, потому что в процессе накопления дросселем энергии ток в нагрузку поступает только из конденсатора. Напряжение пульсаций в обратноходовом преобразователе сравнительно велико, что требует применения выходного конденсатора большой ёмкости.
На Рис. 1.8 изображён однотактный прямоходовой преобразователь. Когда ключ замкнут, ток течёт как в цепи первичной, так и в цепи вторичной обмотки. Ток вторичной обмотки«заряжает» дроссель фильтра, как в понижающем преобразователе.
Рис. 1.8. Идеализированная модель однотактного прямоходового преобразователя
Когда ключ размыкается, ток в дросселе, согласно уравнению(1.1), должен по-прежнему течь. Этому способствует коммутирующий диод D2 во вторичной цепи, который играет ту же роль, что и в понижающем преобразователе.
Реальные трансформаторы обладают ещё и паразитной индуктивностью, которую можно представить в виде дросселя, включенного последовательно с первичной обмоткой трансформатора. Первичный ток, текущий через эту паразитную катушку индуктивности, при размыкании ключа должен в соответствии с уравнением (1.1) продолжать течь. Когда ключ размыкается, ток и первичной, и вторичной обмотки прекращается. Ограничительная обмотка (на схеме слева) включена противофазно первичной и вторичной обмоткам, поэтому, когда ток в них перестаёт течь и магнитный поток в сердечнике трансформатора уменьшается, начинает течь ток в ограничительной обмотке. Этот ток размагничивает сердечник до остаточного значения магнитной индукции и обеспечивает его готовность к отработке следующего импульса. Ограничительная обмотка играет точно такую же роль, что и вторичная обмотка в обратноходовом преобразователе: она отдаёт энергию паразитной индуктивности обратно в первичный источник питания.
39. Двухтактные схемы преобразователей постоянного напряжения в постоянное и переменное напряжение. Особенности функционирования (временные диаграммы в регулируемом и нерегулируемом режиме). Сравнительная оценка схем построения и режимов их функционирования.