
- •2. Источники электрической энергии переменного и постоянного тока. Источники первичного и вторичного электропитания. Общие сведения и понятия.
- •3. Системы электроснабжения и электропитания средств почтовой связи. Принципы построения и функционирования (энергосистема, подстанция, электроустановка, качество электрической энергии).
- •4. Системы электропитания постоянного тока. Классификация. Системы электропитания с использованием и без использования аккумуляторов. Принципы построения и функционирования.
- •Буферная система электропитания
- •С отделенной от нагрузки аб
- •Безаккумуляторная система электропитания
- •5. Системы электропитания переменного тока. Источники бесперебойного питания. Классификация. Принципы построения и функционирования.
- •8. Режим холостого хода трансформатора. Основные соотношения и векторная диаграмма трансформатора в режиме холостого хода. Особенности работы трансформатора источника несинусоидального напряжения.
- •9. Режим короткого замыкания и опыт короткого замыкания трансформатора. Векторная диаграмма трансформатора в этом режиме.
- •10. Рабочий режим трансформатора. Уравнение равновесия намагничивающего сил и эдс. Векторная диаграмма и схема замещения трансформатора в рабочем режиме.
- •Режим короткого замыкания
- •12. Трансформация трехфазного напряжения (тока). Трехфазный трансформатор. Схемы соединения обмоток трансформатора. Группы трехфазных трансформаторов. Условия параллельной работы трансформаторов.
- •14. Измерительные трансформаторы. Автотрансформаторы. Принцип действия. Особенности функционирования и конструктивного исполнения.
- •Автотрансформатор (рис. 1) имеет одну обмотку – обмотку высшего напряжения.
- •Критериями качества работы выпрямителя являются:
- •16. Работа однофазных и трехфазных выпрямителей на нагрузку активного характера.
- •18. Работа выпрямителей на нагрузку индуктивного характера. Временные диаграммы токов и напряжений в цепях и элементах схемы.
- •19. Работа выпрямителей на нагрузку смешанного характера.
- •20. Коэффициент использования трансформатора в схемах выпрямителя. Коэффициент мощности. Кпд выпрямителя.
- •22. Мостовая схема выпрямления (схема Герца). Преимущества и недостатки этой схемы. Временные диаграммы при нагрузках различного характера.
- •23. Простая трехфазная схема выпрямления при работе на нагрузку различного характера.
- •24. Двухфазная простая схема выпрямления. Временные диаграммы при работе на нагрузку различного характера.
- •25. Мостовая шестифазная схема выпрямления (схема Ларионова). Работа схемы на нагрузку
- •26. Схема удваивания напряжения (схема Латура). Временные диаграммы токов и напряжений в цепях и элементах схемы.
- •Критериями качества сглаживающего фильтра являются:
- •28. Индуктивный и емкостной сглаживая фильтры. Преимущества и недостатки. Особенности функционирования. Расчетные соотношения.
- •29. Индуктивно-емкостный сглаживающий фильтр. Особенности функционирования. Эквивалентная схема для простейших сглаживающих фильтров Вывод расчетных соотношений для коэффициента сглаживания.
- •30. Резистивно-емкостной сглаживающий фильтр. Область применения, расчетные соотношения (коэффициенты сглаживания, кпд). Активно- емкостный (r-c) сглаживающий фильтр
- •Буферная система электропитания
- •32. Многозвенные сглаживающие фильтры. Область применения, расчетные соотношения.
- •33. Активные сглаживая фильтры. Особенности функционирования. Преимущества и недостатки.
- •34. Статические преобразователи постоянного напряжения. Назначение. Принципы построения и функционирования. Общие сведения. Классификация, область применения.
- •35. Транзисторные и тиристорные преобразователи постоянного напряжения. Нерегулируемые двухтактные преобразователи напряжения. Основные схемы.
- •36. Инверторы. Принцип инвертирования постоянного напряжения. Основные схемы. Однотактный, двухтактные. Принципы построения и функционирования.
- •37. Типичные схемотехнические решения преобразователей постоянного напряжения с безтрансформаторной развязой. Особенности функционирования.
- •38. Однотактный схемотехнические решения преобразователей постоянного напряжения с трансформаторной развязкой. Область применения. Особенности функционирования.
- •40. Транзисторные преобразователи с самовозбуждением: схема, принцип действия, временные диаграммы, расчетные соотношения.
- •41. Стабилизаторы. Назначение. Классификация. Принципы построения и функционирования. Проблема миниатюризации.
- •Параметричні перетворювачі постійної і змінної напруги: принципи дії, параметри, розрахункові співвідношення, область застосування
- •43. Компенсаційні стабілізатори напруги і струму з беззупинним регулюванням. Принцип побудови і регулювання. Область застосування.
- •Тиристорні стабілізатори напруги: принцип дії, схеми, область застосування. Компенсаційні стабілізатори змінної напруги і струму: принцип будування, схеми, параметри, область застосування.
- •Критериями качества работы выпрямителя являются:
- •Критериями качества сглаживающего фильтра являются:
- •К выпрямительному устройству предъявляются требования по качеству выходного напряжения, которое характеризуется :
- •Основні тенденції, напрямок подальшого розвитку і вдосконалення приладів і систем електроживлення. Питання оптимізації і комплексної мініатюризації приладів і систем електроживлення
35. Транзисторные и тиристорные преобразователи постоянного напряжения. Нерегулируемые двухтактные преобразователи напряжения. Основные схемы.
Основная схема нерегулируемого
транзисторного ИПН представляет
собой двухтактный автогенератор с индуктивной обратной связью, рисунок 1.
Рисунок 1 – Основная схема нерегулируемого импульсного преобразователя
напряжения.
В зависимости от вида петли гистерезиса материала сердечника
трансформатора можно рассматривать два режима работы автогенератора
1) прекращение нарастания магнитного потока происходит вследствие
достижения предельного значения коллекторного тока транзистора,
определяемого в данном режиме базовым током и коэффициентом передачи
тока транзистора h21Э. При этом предполагается, что сердечник трансформатора
не насыщается, так как петля перемагничивания линейна;
2) прекращение нарастания магнитного потока происходит вследствие
насыщения сердечника трансформатора. При этом предполагается, что для
сердечника трансформатора применяется материал с резко выраженной
индукцией насыщения. В этом случае максимальный поток полностью
определяется индукцией насыщения и сечением сердечника трансформатора.
Наибольшее распространение получили преобразователи с сердечникомтрансформатора, имеющим прямоугольную петлю гистерезиса. Это
объясняется малым реактивным током в первичной цепи такого
трансформатора и малыми потерями в активных сопротивлениях.
Обязательным условием работы основной схемы ИПН является
достижение тока проводимости коллекторной цепи транзистора значения h21ЭI
C;
этим обусловлены следующие недостатки преобразователя:
- глубокое насыщение сердечника трансформатора питания при прямоугольной
петле гистерезиса и связанное с этим увеличение потерь в сердечнике и цепи
коллектора силового транзистора;
- существенное изменение режима работы транзистора при изменении
температуры и тока нагрузки;
- высокий уровень помех, возникающих во время переключения силовых
транзисторов.
36. Инверторы. Принцип инвертирования постоянного напряжения. Основные схемы. Однотактный, двухтактные. Принципы построения и функционирования.
Принцип инвертирования напряжения
Для построения схемы инвертора напряжения воспользуемся принципом дуальности. Инвертор является устройством, противоположным выпрямителю, т.к. он преобразует напряжение постоянного тока в разнополярное напряжение прямоугольной или синусоидальной формы. Поменяем местами источник с нагрузкой в схеме выпрямителя и получим схему инвертора напряжения:
Для формирования двухполярного напряжения необходимо определенным образом управлять ключевыми элементами. Обеспечить стабилизацию (регулирование) напряжения на выходе инвертора можно изменением длительности импульсов управления ключами в зависимости от дестабилизирующих факторов.
Однотактный транзисторный инвертор напряжения с передачей энергии на прямом ходе
При подаче управляющего сигнала (UУПР) на базу транзистора VT1 в первичной цепи трансформатора появляется ток. Контур его протекания:
"+" Uвх ; обмотка трансформатора в первичной цепи; коллектор- эмиттер VT1;
"-" U1. На интервале импульса происходит передача энергии в нагрузку через выпрямительный диод VD1 и накопление реактивной энергии в дросселе сглаживающего фильтра L . На интервале паузы (1-KЗ)T осуществляется рекуперация энергии дросселя L через обратный диод VD2 в нагрузку, конденсатор С дополнительно сглаживает пульсации.
К достоинствам схемы относятся: простота силовой цепи и системы управления, дешевизна конструкции. отсутствие режима сквозных токов.
Недостатки: ограничения на максимальное значение коэффициента заполнения импульсов KЗ, большие габариты сглаживающего фильтра, одностороннее намагничивание сердечника трансформатора.
Транзисторный двухтактный инвертор напряжения с самовозбужде-нием
Транзисторный инвертор с насыщающимся трансформатором
На рисунке представлена принципиальная схема транзисторного инвертора напряжения с насыщающимся трансформатором, где R1, R2 - создают смещение на базе транзисторов VT1 и VT2, работающих в ключевом режиме, конденсатор C - обеспечивает прохождение переменной составляющей напряжения обратной связи, обмотки WOC1, WOC2 - образуют цепь положительной обратной связи (ПОС) по напряжению для этого они включены согласно по отношению к обмоткам силового контура W11, W12.
Запуск схемы обеспечивается за счет асимметрии плеч инвертора (транзисторы VT1, VT2 имеют различные ВАХ). Иногда приходится делать принудительный запуск схемы в момент включения, если асимметрия недостаточна для первоначального пуска.
При преобладании коллекторного тока в полуобмотке W11 за счет разностного тока формируется ЭДС с полярностью, указанной красным цветом на рисунке. На выходе инвертора напряжения имеет место положительный сиг-нал прямоугольной формы. За счет обмотки ПОС происходит приоткрывание VT1 и призакрывание VT2. Нарастание коллекторного тока IК1 имеет лавино-образный характер, которое прекращается при заходе в область насыщения транзистора или трансформатора. Скорость изменения потока (Ф0) снижается и происходит смена полярности ЭДС во всех обмотках трансформатора T, приоткрывается транзистор VT2 и процессы повторяются. Частота преобра-зования инвертора определяется выражением:
.
С увеличением тока нагрузки происходит уменьшение частоты преобра-зования за счет увеличения потерь на транзисторных ключах. Если рассмат-ривать реальные процессы, то к концу полупериода работы инвертора напряжения происходит "спад" вершины импульса U2 за счет влияния цепи намагничивания на величину коллекторного тока, что приводит к значительным потерям на силовых ключах. В моменты коммутации ключей возникает переходной процесс, обусловленный индуктивностью рассеяния и емкостью коллекторного перехода транзистора. В начале импульса U2 имеет место "дребезг" сигнала.
При работе инвертора напряжения на выпрямитель в момент прохождения U2 через ноль появляется коммутационная задержка, обусловленная влиянием выпрямителя. Для ее ослабления источник напряжения U1 шунтируется полупроводниковыми диодами по отношению к нагрузке, т.к. в момент переключения диодов (tвыкл>tвкл) все диоды моста включены.