
- •2. Источники электрической энергии переменного и постоянного тока. Источники первичного и вторичного электропитания. Общие сведения и понятия.
- •3. Системы электроснабжения и электропитания средств почтовой связи. Принципы построения и функционирования (энергосистема, подстанция, электроустановка, качество электрической энергии).
- •4. Системы электропитания постоянного тока. Классификация. Системы электропитания с использованием и без использования аккумуляторов. Принципы построения и функционирования.
- •Буферная система электропитания
- •С отделенной от нагрузки аб
- •Безаккумуляторная система электропитания
- •5. Системы электропитания переменного тока. Источники бесперебойного питания. Классификация. Принципы построения и функционирования.
- •8. Режим холостого хода трансформатора. Основные соотношения и векторная диаграмма трансформатора в режиме холостого хода. Особенности работы трансформатора источника несинусоидального напряжения.
- •9. Режим короткого замыкания и опыт короткого замыкания трансформатора. Векторная диаграмма трансформатора в этом режиме.
- •10. Рабочий режим трансформатора. Уравнение равновесия намагничивающего сил и эдс. Векторная диаграмма и схема замещения трансформатора в рабочем режиме.
- •Режим короткого замыкания
- •12. Трансформация трехфазного напряжения (тока). Трехфазный трансформатор. Схемы соединения обмоток трансформатора. Группы трехфазных трансформаторов. Условия параллельной работы трансформаторов.
- •14. Измерительные трансформаторы. Автотрансформаторы. Принцип действия. Особенности функционирования и конструктивного исполнения.
- •Автотрансформатор (рис. 1) имеет одну обмотку – обмотку высшего напряжения.
- •Критериями качества работы выпрямителя являются:
- •16. Работа однофазных и трехфазных выпрямителей на нагрузку активного характера.
- •18. Работа выпрямителей на нагрузку индуктивного характера. Временные диаграммы токов и напряжений в цепях и элементах схемы.
- •19. Работа выпрямителей на нагрузку смешанного характера.
- •20. Коэффициент использования трансформатора в схемах выпрямителя. Коэффициент мощности. Кпд выпрямителя.
- •22. Мостовая схема выпрямления (схема Герца). Преимущества и недостатки этой схемы. Временные диаграммы при нагрузках различного характера.
- •23. Простая трехфазная схема выпрямления при работе на нагрузку различного характера.
- •24. Двухфазная простая схема выпрямления. Временные диаграммы при работе на нагрузку различного характера.
- •25. Мостовая шестифазная схема выпрямления (схема Ларионова). Работа схемы на нагрузку
- •26. Схема удваивания напряжения (схема Латура). Временные диаграммы токов и напряжений в цепях и элементах схемы.
- •Критериями качества сглаживающего фильтра являются:
- •28. Индуктивный и емкостной сглаживая фильтры. Преимущества и недостатки. Особенности функционирования. Расчетные соотношения.
- •29. Индуктивно-емкостный сглаживающий фильтр. Особенности функционирования. Эквивалентная схема для простейших сглаживающих фильтров Вывод расчетных соотношений для коэффициента сглаживания.
- •30. Резистивно-емкостной сглаживающий фильтр. Область применения, расчетные соотношения (коэффициенты сглаживания, кпд). Активно- емкостный (r-c) сглаживающий фильтр
- •Буферная система электропитания
- •32. Многозвенные сглаживающие фильтры. Область применения, расчетные соотношения.
- •33. Активные сглаживая фильтры. Особенности функционирования. Преимущества и недостатки.
- •34. Статические преобразователи постоянного напряжения. Назначение. Принципы построения и функционирования. Общие сведения. Классификация, область применения.
- •35. Транзисторные и тиристорные преобразователи постоянного напряжения. Нерегулируемые двухтактные преобразователи напряжения. Основные схемы.
- •36. Инверторы. Принцип инвертирования постоянного напряжения. Основные схемы. Однотактный, двухтактные. Принципы построения и функционирования.
- •37. Типичные схемотехнические решения преобразователей постоянного напряжения с безтрансформаторной развязой. Особенности функционирования.
- •38. Однотактный схемотехнические решения преобразователей постоянного напряжения с трансформаторной развязкой. Область применения. Особенности функционирования.
- •40. Транзисторные преобразователи с самовозбуждением: схема, принцип действия, временные диаграммы, расчетные соотношения.
- •41. Стабилизаторы. Назначение. Классификация. Принципы построения и функционирования. Проблема миниатюризации.
- •Параметричні перетворювачі постійної і змінної напруги: принципи дії, параметри, розрахункові співвідношення, область застосування
- •43. Компенсаційні стабілізатори напруги і струму з беззупинним регулюванням. Принцип побудови і регулювання. Область застосування.
- •Тиристорні стабілізатори напруги: принцип дії, схеми, область застосування. Компенсаційні стабілізатори змінної напруги і струму: принцип будування, схеми, параметри, область застосування.
- •Критериями качества работы выпрямителя являются:
- •Критериями качества сглаживающего фильтра являются:
- •К выпрямительному устройству предъявляются требования по качеству выходного напряжения, которое характеризуется :
- •Основні тенденції, напрямок подальшого розвитку і вдосконалення приладів і систем електроживлення. Питання оптимізації і комплексної мініатюризації приладів і систем електроживлення
34. Статические преобразователи постоянного напряжения. Назначение. Принципы построения и функционирования. Общие сведения. Классификация, область применения.
Статические преобразователи применяют при питании радиоэлектронной аппаратуры от сети переменного тока промышленной частоты. Энергия, потребляемая от сети промышленной частоты, преобразуется полупроводниковыми преобразователями на повышенной (до 100 кГц) частоте. При таком построении вторичных источников электропитания (ИВЭП) трансформация и последующая фильтрация напряжений производятся на повышенной частоте, что позволяет существенно уменьшить массу и габариты трансформаторов и сглаживающих фильтров.
В преобразователях постоянного напряжения постоянный ток одного напряжения преобразуется в постоянный или переменный ток другого напряжения. Преобразователи, преобразующие энергию постоянного тока в энергию переменного тока, называются инверторами, а процесс преобразования энергии постоянного тока в энергию переменного тока — инвертированием.
Если на выходе преобразователя требуется получить постоянный ток, то после инвертора включается выпрямитель. Такой преобразователь с выходом на постоянном токе называют конвертором.
Преобразование постоянного тока в переменный осуществляют путем периодического подключения нагрузки или первичной обмотки трансформатора к сети постоянного тока с противоположной полярностью. При этом на нагрузке появляется переменное напряжение прямоугольной (в простейшем случае) формы. Таким образом, инвертор содержит переключающее устройство, которое периодически изменяет полярность напряжения на первичной обмотке трансформатора (или непосредственно на нагрузке). В большинстве практических случаев нагрузка включается через трансформатор, который преобразует переменное напряжение и обеспечивает электрическую изоляцию нагрузки от питающей сети.
Для уменьшения потерь мощности в преобразователе элементы переключающего устройства, применяемые в качестве ключей, должны иметь возможно меньшее сопротивление в открытом состоянии и возможно большее сопротивление в закрытом. В качестве элементов переключающих устройств в статических преобразователях энергетически выгодно применять транзисторы, работающие в режиме переключений, и тиристоры.
Транзисторные преобразователи выполняются преимущественно на сравнительно небольшую выходную мощность (до нескольких кВА). Преобразователи на большие мощности (десятки кВА), работающие от сети постоянного тока с повышенным напряжением, выполняют на тиристорах.
По способу возбуждения колебаний различают преобразователи с самовозбуждением и с независимым возбуждением. Преобразователи с самовозбуждением представляют собой релаксационные генераторы с трансформаторной положительной обратной связью. Преобразователи с независимым возбуждением состоят из задающего генератора и усилителя мощности. Задающим генератором в большинстве случаев является маломощный преобразователь с самовозбуждением. Транзисторные преобразователи с самовозбуждением применяют при мощности в нагрузке до нескольких десятков ватт, при большей мощности используют преобразователи с независимым возбуждением.
По принципу действия различают однотактные и двухтактные преобразователи постоянного напряжения. В однотактных преобразователях энергия из сети постоянного тока передается в нагрузку в течение одного из двух тактов работы преобразователя. В двухтактных схемах рабочими являются оба такта, т. е. энергия из сети постоянного тока передается в нагрузку в течение обоих тактов работы преобразователя.
Транзисторные и тиристорные преобразователи подразделяются на нерегулируемые и регулируемые. Регулируемые преобразователи используются как регуляторы и стабилизаторы постоянного и переменного напряжения.
Преобразователи классифицируются также по числу фаз выходного переменного напряжения (одно-, трехфазные и т.д.); по форме этого напряжения (с синусоидальной, прямоугольной, ступенчатой и другой формой); по наличию стабилизации и способу управления выходным напряжением и частотой, а также по ряду других признаков.